【題目】如圖,菱形OABC的一邊OA在x軸的負半軸上,O是坐標(biāo)原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若△COD的面積為20,則k的值等于_____.
【答案】﹣24
【解析】作DE∥AO,CF⊥AO,設(shè)CF=4x,
∵四邊形OABC為菱形,
∴AB∥CO,AO∥BC,
∵DE∥AO,
∴S△ADO=S△DEO,
同理S△BCD=S△CDE,
∵S菱形ABCO=S△ADO+S△DEO+S△BCD+S△CDE,
∴S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO=40,
∵tan∠AOC=,
則OF=3x,CF=4x,
∴OC==5x,
∴OA=OC=5x,
∵S菱形ABCO=AOCF=20x2,解得:x=,
∴OF=3,CF=4,
∴點C坐標(biāo)為(﹣3,4),
∵反比例函數(shù)y=的圖象經(jīng)過點C,
∴代入點C得:k=﹣24,
故答案為﹣24.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批電視機,一月份每臺毛利潤是售出價的20%(毛利潤=售出價-買入價),二月份該商場將每臺售出價調(diào)低10%(買入價不變),結(jié)果銷售臺數(shù)比一月份增加120%,那么二月份的毛利潤總額與一月份毛利潤總額的比是__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上兩點間的距離等于這兩個點所對應(yīng)的數(shù)的差的絕對值.例:點A、B在數(shù)軸上對應(yīng)的數(shù)分別為a、b,則A、B兩點間的距離表示為AB=|a﹣b|.根據(jù)以上知識解題:
(1)點A在數(shù)軸上表示3,點B在數(shù)軸上表示2,那么AB=_______.
(2)在數(shù)軸上表示數(shù)a的點與﹣2的距離是3,那么a=______.
(3)如果數(shù)軸上表示數(shù)a的點位于﹣4和2之間,那么|a+4|+|a﹣2|=______.
(4)對于任何有理數(shù)x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接寫出最小值.如果沒有.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我省教育廳下發(fā)了在全省中小學(xué)幼兒園廣泛開展節(jié)約教育的通知,通知中要求各學(xué)校全面持續(xù)開展“光盤行動”深圳市教育局督導(dǎo)組為了調(diào)查學(xué)生對“節(jié)約教育”內(nèi)容的了解程度程度分為:“A:了解很多”、“B:了解較多”、“C:了解較少”、“D:不了解”,對本市某所中學(xué)的學(xué)生進行了抽樣調(diào)查我們將這次調(diào)查的結(jié)果繪制了以下兩幅不完整統(tǒng)計圖:
根據(jù)以上信息,解答下列問題:
補全條形統(tǒng)計圖;
本次抽樣調(diào)查了______名學(xué)生;在扇形統(tǒng)計圖中,求出“D”的部分所對應(yīng)的圓心角度數(shù).
若該中學(xué)共有2000名學(xué)生,請你估計這所中學(xué)的所有學(xué)生中,對“節(jié)約教育”內(nèi)容“了解較少”的有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,于點,點在上,且,連接.
(1)求證:
(2)如圖,將繞點逆時針旋轉(zhuǎn)得到(點分別對應(yīng)點),設(shè)射線與相交于點,連接,試探究線段與之間滿足的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中,厘米,,厘米,點D為AB的中點如果點P在線段BC上以v厘米秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動若點Q的運動速度為3厘米秒,則當(dāng)與全等時,v的值為
A. B. 3 C. 或3 D. 1或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郵遞員騎車從郵局出發(fā),先向西騎行 2 km 到達 A 村,繼續(xù)向西騎行 3 km 到達 B 村, 然后向東騎行 9 km 到達 C 村,最后回到郵局.
(1)以郵局為原點,以向東方向為正方向,用 1 cm 表示 1 km 畫數(shù)軸,并在該數(shù)軸上表示 A,B,C 三個村莊的位置;
(2)C 村離 A 村有多遠?
(3)郵遞員一共騎行了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,對角線BD平分∠ABC,∠ADB=32°,∠BCD+∠DCA=180°,那么∠ACD為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在下列兩個條件下,分別求代數(shù)式和的值,將結(jié)果直接填寫在下面的橫線上:
①當(dāng)時,= ,= ;
②當(dāng)時,= ,= ;
(2)觀察結(jié)果,你有什么發(fā)現(xiàn)?請寫出結(jié)論,并再任選a、b的值加以驗證;
(3)利用你的發(fā)現(xiàn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com