【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上的一動點(diǎn).連接CE,過點(diǎn)B作BF⊥CE,垂足為F交直線CD于點(diǎn)G.
(1)如圖l,當(dāng)點(diǎn)E在線段AD上時,請直接判斷AE與CG的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點(diǎn)E在線段DB上時,(1)中AE與CG的數(shù)量關(guān)系是否依然成立,若成立,請證明;若不成立,請說明理由.
(3)當(dāng)AC=2,且四邊形DEFG的面積為時,請直接寫出線段AE的長.
【答案】(1)AE=CG,理由見解析;(2)依然成立, AE=CG;理由見解析;(3)線段AE的長為1或3.
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)得到∠A=∠ABC,根據(jù)同角的余角相等得到∠CBG=∠ACE,根據(jù)ASA證明△ACE≌△CBG,即可得出結(jié)論;
(2)同理即可證明△ACE≌△CBG,即可得出結(jié)論;
(3)由等腰直角三角形的性質(zhì)得出AB=AC=4,CD=AB=AD=BD=2,CD⊥AB,證明△CDE≌△BDG,得出DE=DG,設(shè)DE=DG=x,則CG=2-x,CE= ,證明△CFG∽△CDE,得出 ,求出FG=,CF=,,由四邊形DEFG的面積=△CDE的面積-△CFG的面積=,得出方程,解方程得出DE=1;再分兩種情況,即可得出答案.
(1)AE=CG,理由如下:
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠A=∠ABC=45°.
∵點(diǎn)D是AB的中點(diǎn),
∴∠BCG=∠ACB=45°,
∴∠A=∠BCG.
∵BF⊥CE,
∴∠CBG+∠BCF=90°.
∵∠ACE+∠BCF=90°,
∴∠CBG=∠ACE,
在△ACE和△CBG中,,
∴△ACE≌△CBG(ASA),
∴AE=CG;
(2)(1)中AE與CG的數(shù)量關(guān)系依然成立,即AE=CG;理由如下:
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠A=∠ABC=45°.
∵點(diǎn)D是AB的中點(diǎn),
∴∠BCG=∠ACB=45°,
∴∠A=∠BCG.
∵BF⊥CE,
∴∠CBG+∠BCF=90°.
∵∠ACE+∠BCF=90°,
∴∠CBG=∠ACE,
在△ACE和△CBG中,,
∴△ACE≌△CBG(ASA),
∴AE=CG;
(3)∵在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),
∴AB=AC=4,CD=AB=AD=BD=2,CD⊥AB,
∴∠CDE=∠BDG=90°,
∴∠CED+∠DCE=90°,
∵BF⊥CE,
∴∠DBG+∠CED=∠90°,
∴∠DCE=∠DBG,
在△CDE和△BDG中,,
∴△CDE≌△BDG(ASA),
∴DE=DG,
設(shè)DE=DG=x,則CG=2-x,CE==,
∵∠CFG=∠CDE=90°,∠FCG=∠DCE,
∴△CFG∽△CDE,
∴==,即==,
解得:FG=,CF=,
∵四邊形DEFG的面積=△CDE的面積-△CFG的面積=,
∴×x×2-××=,
解得:x=1,即DE=1;
①當(dāng)點(diǎn)E在線段AD上時,AE=AD-DE=1;
②當(dāng)點(diǎn)E在線段DB上時,AE=AD+DE=3;
綜上所述,當(dāng)AC=2,且四邊形DEFG的面積為時,線段AE的長為1或3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義兩個不相交的函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“和諧值”.
(1)求拋物線y=x2﹣2x+2與x軸的“和諧值”;
(2)求拋物線y=x2﹣2x+2與直線y=x﹣1的“和諧值”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx﹣3的圖象與x軸分別相交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(3,0),與y軸的交點(diǎn)為C,動點(diǎn)T在射線AB上運(yùn)動,在拋物線的對稱軸l上有一定點(diǎn)D,其縱坐標(biāo)為2,l與x軸的交點(diǎn)為E,經(jīng)過A、T、D三點(diǎn)作⊙M.
(1)求二次函數(shù)的表達(dá)式;
(2)在點(diǎn)T的運(yùn)動過程中,
①∠DMT的度數(shù)是否為定值?若是,請求出該定值:若不是,請說明理由;
②若MT=AD,求點(diǎn)M的坐標(biāo);
(3)當(dāng)動點(diǎn)T在射線EB上運(yùn)動時,過點(diǎn)M作MH⊥x軸于點(diǎn)H,設(shè)HT=a,當(dāng)OH≤x≤OT時,求y的最大值與最小值(用含a的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在△ABC中,∠ACB=90°,AC=BC過點(diǎn)C的射線CF交邊AB于點(diǎn)F,AD⊥CF于點(diǎn)D,BE⊥CF于點(diǎn)E,AD=3,BE=1.
(1)求證:△ADC≌△CEB.
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小剛同學(xué)在廣場上觀測新華書店樓房墻上的電子屏幕CD,點(diǎn)A是小剛的眼睛,測得屏幕下端D處的仰角為30°,然后他正對屏幕方向前進(jìn)了6m到達(dá)B處,又測得該屏幕上端C處的仰角為45°,延長AB與樓房垂直相交于點(diǎn)E,測得BE=21m,則該屏幕上端與下端之間的距離CD為______m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展以“學(xué)習(xí)朱子文化,弘揚(yáng)理學(xué)思想”為主題的讀書月活動,并向?qū)W生征集讀后感,學(xué)校將收到的讀后感篇數(shù)按年級進(jìn)行統(tǒng)計,繪制了以下兩幅統(tǒng)計圖(不完整).
據(jù)圖中提供的信息完成以下問題
(1)扇形統(tǒng)計圖中“八年級”對應(yīng)的圓心角是 °,并補(bǔ)全條形統(tǒng)計圖;
(2)經(jīng)過評審,全校有4篇讀后感榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎讀后感中任選兩篇在校廣播電臺上播出,請利用畫樹狀圖或列表的方法求出七年級特等獎讀后感被校廣播電臺播出的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A為圓心、AB為半徑畫圓,與邊BC交于另一點(diǎn)D.
(1)求BD的長;
(2)連接AD,求∠DAC的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:平面內(nèi),如果一個四邊形的四個頂點(diǎn)到某一點(diǎn)的距離都相等,則稱這一點(diǎn)為該四邊形的外心.
(1)下列四邊形:平行四邊形、矩形、菱形中,一定有外心的是 ;
(2)已知四邊形ABCD有外心O,且A,B,C三點(diǎn)的位置如圖1所示,請用尺規(guī)確定該四邊形的外心,并畫出一個滿足條件的四邊形ABCD;
(3)如圖2,已知四邊形ABCD有外心O,且BC=8,sin∠BDC=,求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD的邊長為8,點(diǎn)E、F分別在AD、CD上,AE=DF=2,BE與AF相交于點(diǎn)G,點(diǎn)H為BF的中點(diǎn),連接GH,則GH的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com