【題目】已知:如圖,在ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F(xiàn)兩點,連結(jié)BE,DF.
(1)求證:△DOE≌△BOF;
(2)當∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.
【答案】
(1)證明:∵在ABCD中,O為對角線BD的中點,
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中
,
∴△DOE≌△BOF(ASA)
(2)解:當∠DOE=90°時,四邊形BFDE為菱形,
理由:∵△DOE≌△BOF,
∴OE=OF,
又∵OB=OD
∴四邊形EBFD是平行四邊形,
∵∠EOD=90°,
∴EF⊥BD,
∴四邊形BFDE為菱形.
【解析】(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一組對邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.
【考點精析】掌握平行四邊形的性質(zhì)和菱形的判定方法是解答本題的根本,需要知道平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.
科目:初中數(shù)學 來源: 題型:
【題目】動手操作: 如圖①是一個長為2a,寬為2b的長方形,沿圖中的虛線剪開分成四個大小相等的長方形,然后按照圖②所示拼成一個正方形.
提出問題:
(1)觀察圖②,請用兩種不同的方法表示陰影部分的面積;
(2)請寫出三個代數(shù)式(a+b)2 , (a﹣b)2 , ab之間的一個等量關(guān)系. 問題解決:
根據(jù)上述(2)中得到的等量關(guān)系,解決下列問題:
已知:x+y=6,xy=3.求:(x﹣y)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,歸納各計算結(jié)果中的個位數(shù)字的規(guī)律,猜測32017+1的個位數(shù)字是( )
A.0
B.2
C.4
D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A、B、C三點在數(shù)軸上從左向右排列,且AC=3AB=6,若B為原點,則點C所表示的數(shù)是( )
A. -6B. 2C. 4D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com