【題目】a,b,c是同一平面內(nèi)任意三條直線,交點(diǎn)可能有(  )

A. 1個或2個或3 B. 0個或1個或2個或3

C. 1個或2 D. 都不對

【答案】B

【解析】分情況討論,一是三條直線平行;二是只有兩條直線平行;三是三條直線都不平行.則交點(diǎn)可以為0個或1個或2個或3個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=6,AC=8,BC=10,D是△ABC內(nèi)部或BC邊上的一個動點(diǎn)(與B、C不重合),以D為頂點(diǎn)作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.

(1)求∠D的度數(shù);

(2)若兩三角形重疊部分的形狀始終是四邊形AGDH.

①如圖1,連接GH、AD,當(dāng)GH⊥AD時,請判斷四邊形AGDH的形狀,并證明;

②當(dāng)四邊形AGDH的面積最大時,過A作AP⊥EF于P,且AP=AD,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊陽同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價值觀標(biāo)語,其具體信息匯集如下:

如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據(jù)上述信息求標(biāo)語CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑物AC頂部有一旗桿AB,且點(diǎn)A,BC在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進(jìn)了20米到達(dá)地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù):≈1.73,≈1.41

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在實(shí)數(shù)范圍內(nèi)定義運(yùn)算“♀”,該運(yùn)算同時滿足下列條件:

(1)x♀x=5,(x≠5);(2)x♀(y♀z)=(x♀y)+z,2015♀2017的值是( 。

A. 2 B. 3 C. 2015 D. 2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C、D⊙O上,∠A=2∠BCD,點(diǎn)EAB的延長線上,∠AED=∠ABC

1)求證:DE⊙O相切;

2)若BF=2DF=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,給出三個論斷:①∠A=∠B;② AB//CD;③∠BCD=∠DCE,試回答下列問題:

(1)請用其中的兩個論斷作為條件,另一個作為結(jié)論,寫出所有的真命題(用序號寫出命題,如:如果*、*,那么*);

(2)選擇(1)中你寫出的任一命題,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)E,連接BD,BE.

(1)如圖,當(dāng)α=60°時,延長BE交AD于點(diǎn)F.

①求證:△ABD是等邊三角形;

②求證:BF⊥AD,AF=DF;

③請直接寫出BE的長;

(2)在旋轉(zhuǎn)過程中,過點(diǎn)D作DG垂直于直線AB,垂足為點(diǎn)G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無公共點(diǎn)時,請直接寫出BE+CE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=3,AD=4,動點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個單位的速度,沿AB向點(diǎn)B移動;同時點(diǎn)P從點(diǎn)B出發(fā),仍以每秒1個單位的速度,沿BC向點(diǎn)C移動,連接QP,QD,PD.若兩個點(diǎn)同時運(yùn)動的時間為x秒0<x3,解答下列問題:

1設(shè)QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時,S有最大值?并求出最小值;

2是否存在x的值,使得QPDP?試說明理由.

查看答案和解析>>

同步練習(xí)冊答案