【題目】推理填空:如圖,已知∠B=∠CGF,∠DGF=∠F,求證∠B+∠F=180°.
證明:∵∠B= (已知),
∴AB∥C( ),
∵∠DGF= (已知),
∴CD∥EF( ),
∴AB∥ ( )
∴∠B+ =180°( ).
【答案】∠CGF;同位角相等,兩直線平行;∠F;內(nèi)錯角相等,兩直線平行;EF;平行于同一條直線的兩條直線平行;∠F;兩直線平行,同旁內(nèi)角互補
【解析】試題分析:根據(jù)平行線的判定定理得出AB∥CD,CD∥EF,從而得出AB∥EF,由平行線的性質得出
試題解析:證明::∵∠B=∠CGF(已知)
∴AB∥CD(同位角相等兩直線平行)
∵∠DGF=∠F(已知)
∴CD∥EF,
∴AB∥EF(平行于同一直線的兩直線平行)
∴ (兩直線平行同旁內(nèi)角互補),
故答案為: ∠CGF,同位角相等兩直線平行,∠F,內(nèi)錯角相等,兩直線平行,EF,平行于同一條直線的兩條直線平行,∠F,兩直線平行同旁內(nèi)角互補.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點P(1,0).點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位至點P3,第4次向右跳動3個單位至點P4,第5次又向上跳動1個單位至點P5,第6次向左跳動4個單位至點P6,…….照此規(guī)律,點P第100次跳動至點P100的坐標是( )
A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商家預測一種應季襯衫能暢銷市場,就用13 200元購進了一批這種襯衫,面市后果然供不應求,商家又用28 800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完利潤率不低于25%(不考慮其他因素),那么每件襯衫的標價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖(1)是我們常見的“箭頭圖”,其中隱藏著哪些數(shù)學知識呢?下面請你解決以下問題:
(1)觀察如圖(1)“箭頭圖”,試探究∠BDC與∠A、∠B、∠C之間大小的關系,并說明理由;
(2)請你直接利用以上結論,回答下列兩個問題:
①如圖(2),把一塊三角板XYZ放置在△ABC上,使其兩條直角邊XY、XZ恰好經(jīng)過點B、C.若∠A=50°,則∠ABX+∠ACX= ;
②如圖(3),∠ABD,∠ACD的五等分線分別相交于點G1、G2、G3、G4,若∠BDC=135°,∠BG1C=67°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=6cm,點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒1cm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′.設點Q運動的時間為t秒,若四邊形QPCP′為菱形,則t的值為( )
A. B.2 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】何老師安排喜歡探究問題的小明解決某個問題前,先讓小明看了一個有解答過程的例題.
例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0∴m=﹣3,n=3
為什么要對2n2進行了拆項呢?
聰明的小明理解了例題解決問題的方法,很快解決了下面兩個問題.相信你也能很好的解決下面的這兩個問題,請寫出你的解題過程..
解決問題:
(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;
(2)已知a、b、c是△ABC的三邊長,滿足a2+b2=10a+12b﹣61,c是△ABC中最短邊的邊長,且c為整數(shù),那么c可能是哪幾個數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)若a是(-4)2的平方根,b的一個平方根是2,求式子a+b的立方根;
(2)實數(shù)a,b互為相反數(shù),c,d互為倒數(shù),x的絕對值為,求式子x2+(a+b+cd)x++的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫下面證明過程中的推理依據(jù):
已知AD⊥BC,F(xiàn)G⊥BC,垂足分別為D、G,且∠1=∠2,求證∠BDE=∠C.
證明:∵AD⊥BC,F(xiàn)G⊥BC (已知),
∴∠ADC=∠FGC=90°____________.
∴AD∥FG______________________.
∴∠1=∠3___________________
又∵∠1=∠2,(已知),
∴∠3=∠2____________.
∴ED∥AC_____________.
∴∠BDE=∠C______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com