【題目】在△ABC中,∠B=90°∠A
(1)如圖1,求證:AB=AC;
(2)如圖2,若∠BAC=90°,點(diǎn)D為AB上一點(diǎn),過(guò)點(diǎn)B作直線CD的垂線,垂足為E,連接AE, 求∠AEC的度數(shù);
(3)如圖3,在(2)的條件下,過(guò)點(diǎn)A作AE的垂線交CE于點(diǎn)F,連接BF,若∠ABF-∠EAB=15°,G為DF上一點(diǎn),連接AG,若∠AGD=∠EBF,AG=6,求CF的長(zhǎng).
【答案】(1)證明見(jiàn)詳解;(2)45°;(3)6
【解析】
(1)利用三角形內(nèi)角和定理求出,即可證明,即可證明AB=AC;
(2)在CE上截取CF=BE,連接AF,通過(guò)證明,可得證明是等腰直角三角形,從而求出∠AEC;
(3)由(2)得出,證明,得出,利用角的轉(zhuǎn)換求出∠AGD=∠EBF=60°,再根據(jù)30°直角三角形的性質(zhì)求出EF,然后再根據(jù)勾股定理求出CF的長(zhǎng)度.
解:(1)=
=90°∠A
∴
∴AB=AC
(2)如圖:
在CE上截取CF=BE,連接AF
由(1)得AB=AC
∴
又∠BAC=90°,(對(duì)頂角)
∴
在和中
∴
∴AE=AF,
又∠BAC=∠DAF+∠FAC=90°
∴∠DAF+∠EAB=90°
∴EAF是等腰直角三角形
∴∠AEC=45°
(3)如圖:作AHEC
由(2)得
(對(duì)頂角相等)
又∠ABF-∠EAB=15°
∴∠AGD=∠EBF=60°
∴在RtAHG中,HG=
∴EF=
在RtBEF中 ,設(shè)BE=x,則BF=2x
∴
解得:
∴BE=6
∴CF=BE=6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC 中,AB=15,AC=13,高 AD=12,則△ABC 的周長(zhǎng)是( )
A. 42B. 32C. 42 或 32D. 42 或 37
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=(k為常數(shù)).
(1)若點(diǎn)P1(,y1)和點(diǎn)P2(﹣,y2)是該反比例函數(shù)圖象上的兩點(diǎn),試?yán)梅幢壤瘮?shù)的性質(zhì)比較y1和y2的大;
(2)設(shè)點(diǎn)P(m,n)(m>0)是其圖象上的一點(diǎn),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M.若tan∠POM=2,PO=(O為坐標(biāo)原點(diǎn)),求k的值,并直接寫(xiě)出不等式kx+>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)O為直線AB上的一點(diǎn),∠BOC=∠DOE=90°
(1)如圖1,當(dāng)射線OC、射線OD在直線AB的兩側(cè)時(shí),請(qǐng)回答結(jié)論并說(shuō)明理由;
①∠COD和∠BOE相等嗎?
②∠BOD和∠COE有什么關(guān)系?
(2)如圖2,當(dāng)射線OC、射線OD在直線AB的同側(cè)時(shí),請(qǐng)直接回答;
①∠COD和∠BOE相等嗎?
②第(1)題中的∠BOD和∠COE的關(guān)系還成立嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點(diǎn)O在AB上,經(jīng)過(guò)點(diǎn)A的⊙O與BC相切于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,AB=2,動(dòng)點(diǎn)D從B開(kāi)始沿BC向點(diǎn)C運(yùn)動(dòng),到達(dá)點(diǎn)C后停止運(yùn)動(dòng),將△ABD繞點(diǎn)A旋轉(zhuǎn)后得到△ACE,則下列說(shuō)法中,正確的是( 。
①DE的最小值為1;②ADCE的面積是不變的;③在整個(gè)運(yùn)動(dòng)過(guò)程中,點(diǎn)E運(yùn)動(dòng)的路程為2;④在整個(gè)運(yùn)動(dòng)過(guò)程中,△ADE的周長(zhǎng)先變小后變大.
A. ①③④ B. ①②③ C. ②③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)△EFC是直角三角形時(shí),那么BE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開(kāi)展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛(ài)好”的問(wèn)題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加;@球隊(duì),請(qǐng)直接寫(xiě)出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上線段AB長(zhǎng)2個(gè)單位長(zhǎng)度,CD長(zhǎng)4個(gè)單位長(zhǎng)度,點(diǎn)A在數(shù)軸上表示的數(shù)是﹣10,點(diǎn)C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).
(1)問(wèn):運(yùn)動(dòng)多少秒后,點(diǎn)B與點(diǎn)C互相重合?
(2)當(dāng)運(yùn)動(dòng)到BC為6個(gè)單位長(zhǎng)度時(shí),則運(yùn)動(dòng)的時(shí)間是多少秒?
(3)P是線段AB上一點(diǎn),當(dāng)點(diǎn)B運(yùn)動(dòng)到線段CD上時(shí),是否存在關(guān)系式?若存在,求線段PD的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com