【題目】周末,小亮一家在東昌湖游玩,媽媽在湖心島岸邊P處觀看小亮與爸爸在湖中劃船(如圖).小船從P處出發(fā),沿北偏東60°劃行200米到達A處,接著向正南方向劃行一段時間到達B處.在B處小亮觀測媽媽所在的P處在北偏西37°方向上,這時小亮與媽媽相距多少米(精確到米)?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.751.41,1.73

【答案】288米

【解析】

解:作PDAB于點D,

由已知得PA=200米,APD=30°B=37°,

RtPAD中,

cos30°,得PD=PAcos30°=200×=100米,

RtPBD中,由sin37°,

得PB=288.

小亮與媽媽的距離約為288米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8,BC4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是中國古代數(shù)學專著,在數(shù)學上有其獨到的成就,不僅最早提到了分數(shù)問題,也首先記錄了“盈不足”等問題.如有一道闡述“盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價各幾何?譯文為:現(xiàn)有若干人合伙出錢買雞,如果每人出9文錢,就會多11文錢;如果每人出6文錢,又會缺16文錢.問買雞的人數(shù)、雞的價格各是多少?請解答上述問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,CDAB于點D,DA=DC=4DB=2,AFBC于點F,交DC于點E

1)求線段AE的長;

2)若點GAC的中點,點M是線段CD上一動點,連結GM,過點GGNGM交直線AB于點N,記CGM的面積為S1,AGN的面積為S2.在點M的運動過程中,試探究:S1S2的數(shù)量關系

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E在邊BC,如果點F是邊AD上的點,那么CDFABE不一定全等的條件是(  )

A. DF=BE B. AF=CE

C. CF=AE D. CFAE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知DCFP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG

(1)說明:DCAB;

(2)求∠PFH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育用品商店老板到體育商場批發(fā)籃球、足球、排球共個,得知該體育商場籃球、足球、排球平均每個元,籃球比排球每個多元,排球比足球每個少.

1 求出這三種球每個各多少元;

2 經(jīng)決定,該老板批發(fā)了三種球的任意兩種共個,共花費了1060元,問該老板可能買了哪兩種球?各買了幾個;

3 該老板打算將每一種球各提價元后,再進行打折銷售,若排球、足球打八折,籃球打八五折,在(2)的情況下,為獲得最大利潤,他批發(fā)的一定是哪兩種球?各買了幾個?計算并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題)如圖①,點D是∠ABC的角平分線BP上一點,連接AD,CD,若∠A與∠C互補,則線段ADCD有什么數(shù)量關系?

(探究)

探究一:如圖②,若∠A90°,則∠C180°﹣∠A90°,即ADABCDBC,又因為BD平分∠ABC,所以ADCD,理由是:   

探究二:若∠A≠90°,請借助圖①,探究ADCD的數(shù)量關系并說明理由.

[理論]D是∠ABC的角平分線BP上一點,連接AD,CD,若∠A與∠C互補,則線段ADCD的數(shù)量關系是   

[拓展]已知:如圖③,在ABC中,ABAC,∠A100°,BD平分∠ABC

求證:BCAD+BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明每天上午9時騎自行車離開家,15時回家,他描繪了離家的距與時間的變化情況.

(1)圖象表示哪兩個變量的關系?哪個是自變量?哪個是因變量?

(2)10時和13時,他分別離家多遠?

(3)他到達離家最遠的地方時什么時間?離家多遠?

(4)11時到12時他行駛了多少千米?

(5)他由離家最遠的地方返回的平均速度是多少.

查看答案和解析>>

同步練習冊答案