【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長線上,CD與⊙O相切于點(diǎn)D,CE⊥AD,交AD的延長線于點(diǎn)E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長.
【答案】(1)證明過程見解析;(2)6.
【解析】試題分析:(1)連接OD,由CD是⊙O切線,得到∠ODC=90°,根據(jù)AB為⊙O的直徑,得到∠ADB=90°,等量代換得到∠BDC=∠ADO,根據(jù)等腰直角三角形的性質(zhì)得到∠ADO=∠A,即可得到結(jié)論;(2)根據(jù)垂直的定義得到∠E=∠ADB=90°,根據(jù)平行線的性質(zhì)得到∠DCE=∠BDC,根據(jù)相似三角形的性質(zhì)得到,解方程即可得到結(jié)論.
試題解析:(1)連接OD, ∵CD是⊙O切線, ∴∠ODC=90°, 即∠ODB+∠BDC=90°,
∵AB為⊙O的直徑, ∴∠ADB=90°, 即∠ODB+∠ADO=90°, ∴∠BDC=∠ADO,
∵OA=OD, ∴∠ADO=∠A, ∴∠BDC=∠A;
(2)∵CE⊥AE, ∴∠E=∠ADB=90°, ∴DB∥EC, ∴∠DCE=∠BDC, ∵∠BDC=∠A, ∴∠A=∠DCE,
∵∠E=∠E, ∴△AEC∽△CED, ∴, ∴EC2=DEAE, ∴16=2(2+AD), ∴AD=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算(x-5y)(3x+4y)的結(jié)果正確的是( )
A. 3x2-20y2 B. 3x2-15xy+20y2
C. 3x2-11xy-20y2 D. 3x2+20y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)國家統(tǒng)計(jì)局?jǐn)?shù)據(jù),2018年全年國內(nèi)生產(chǎn)總值為90.3萬億,比2017年增長6.6%.假設(shè)國內(nèi)生產(chǎn)總值的年增長率保持不變,則國內(nèi)生產(chǎn)總值首次突破100萬億的年份是( )
A. 2019年B. 2020年C. 2021年D. 2022年
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線()交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為直線x=―2 .
(1)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)進(jìn)行如下探究:
探究一:如圖1,設(shè)△PAD的面積為S,令W=t·S,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒有,說明理由;
探究二:如圖2,是否存在以P、A、D為頂點(diǎn)的三角形與Rt△AOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型超市從生產(chǎn)基地以每千克a元的價(jià)格購進(jìn)一種水果m千克,運(yùn)輸過程中重量損失了10%,超市在進(jìn)價(jià)的基礎(chǔ)上増加了30%作為售價(jià),假定不計(jì)超市其他費(fèi)用,那么售完這種水果,超市獲得的利潤是_____元(用含m、a的代數(shù)式表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com