如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=            .

試題分析:設(shè)A點坐標為(0,a),利用兩個函數(shù)解析式求出點B、C的坐標,然后求出AB的長度,再根據(jù)CD∥y軸,利用y1的解析式求出D點的坐標,然后利用y2求出點E的坐標,從而得到DE的長度,然后求出比值即可得解.
設(shè)A點坐標為(0,a),(a>0),
,解得,
∴點B(,a),
,解得,
∴點C(,a),
∵CD∥y軸,
∴點D的橫坐標與點C的橫坐標相同,為,

∴點D的坐標為(,3a),
∵DE∥AC,
∴點E的縱坐標為3a,
,解得,
∴點E的坐標為(,),

點評:本題主要利用了二次函數(shù)圖象上點的坐標特征,根據(jù)平行與x軸的點的縱坐標相同,平行于y軸的點的橫坐標相同,求出用點A的縱坐標表示出各點的坐標是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:直線軸于點,交軸于點,拋物線經(jīng)過、(1,0)三點.

(1)求拋物線的解析式;
(2)若點的坐標為(-1,0),在直線上有一點,使相似,求出點的坐標;
(3)在(2)的條件下,在軸下方的拋物線上,是否存在點,使的面積等于四邊形的面積?如果存在,請求出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點(-1,-4)且過點(0,-3),直線l是它的對稱軸。

(1)求此拋物線的解析式;
(2)設(shè)拋物線交x軸于點A、B(A在B的左邊),交y軸于點C,P為l上的一動點,當△PBC的周長最小時,求P點的坐標。
(3)在直線l上是否存在點M,使△MBC是等腰三角形,若存在,直接寫出符合條件的點M的坐標;若不存在請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象過點.

(1)求二次函數(shù)的解析式;
(2)求證:是直角三角形;
(3)若點在第二象限,且是拋物線上的一動點,過點垂直軸于點,試探究是否存在以、為頂點的三角形與相似?若存在,求出點的坐標.若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線經(jīng)過B(3,0)、C(0,3)兩點,頂點為A
求:(1)拋物線的表達式;
(2)頂點A的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象與軸相交于兩個不同的點、,與軸的交點為.設(shè)的外接圓的圓心為點

(1)求軸的另一個交點D的坐標;
(2)如果恰好為的直徑,且的面積等于,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,把兩個全等的Rt△AOB和Rt△COD分別置于平面直角坐標系中,使直角邊OB、OD在x軸上.已知點A(1,2)在二次函數(shù)y=ax2+(a+5)x的圖象上.

(1)求該二次函數(shù)的關(guān)系式;
(2)點C是否在此二次函數(shù)的圖象上,說明理由;
(3)若點P為直線OC上一個動點,過點P作y軸的平行線交拋物線于點M,問是否存在這樣的點P,使得四邊形ABMP為平行四邊形?若存在,求出此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,拋物線y=x2x與x軸交于O,A兩點. 半徑為1的動圓(⊙P),圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;半徑為2的動圓(⊙Q),圓心從A點出發(fā)沿拋物線向靠近點O的方向移動. 兩圓同時出發(fā),且移動速度相等,當運動到P,Q兩點重合時同時停止運動. 設(shè)點P的橫坐標為t .

(1)點Q的橫坐標是         (用含t的代數(shù)式表示);
(2)若⊙P與⊙Q 相離,則t的取值范圍是          .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖,則下列結(jié)論中正確的是
A.  B.當時,的增大而增大
C.  D.是方程的一個根

查看答案和解析>>

同步練習冊答案