【題目】某班將舉行“數(shù)學知識競賽”活動,班長安排小明購買獎品,下面兩圖是小明買回獎品時與班長的對話情境:

請根據(jù)上面的信息,解決問題:

(1)試計算兩種筆記本各買了多少本?

(2)請你解釋:小明為什么不可能找回68元?

【答案】(1) 5元筆記本買了25本,8元筆記本買了15本 (2)不可能找回68

【解析】試題分析:(1)解法一:設5元、8元的筆記本分別買本,本,

依題意,得:,解得:.

答:5元和8元筆記本分別買了25本和15.

解法二:設買5元的筆記本,則買(40)本8元筆記本,依題意,得:

,解得:=25.

答::5元和8元筆記本分別買了25本和15.

2)解法一:應找回的錢款為3005×258×15=55≠68,故不能找回68.

解法二:設買5元的筆記本,則買8元的筆記本.依題意,得:,解得.是正整數(shù),所以不合題意,應舍去,故不能找回68.

解法三:買255元的筆記本和158元的筆記本的價錢總數(shù)應為奇數(shù)而不是偶數(shù),故不能找回68.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上有A,B,C三個點,分別表示有理數(shù)﹣24,﹣10,10,動點PA出發(fā),以每秒4個單位長度的速度向終點C移動,設移動時間為t秒.

(1)用含t的代數(shù)式表示點PA的距離:PA=   ;點P對應的數(shù)是   ;

(2)動點Q從點B出發(fā),以每秒1個單位長度的速度向終點C移動,若P、Q同時出發(fā),求:當點P運動多少秒時,點P和點Q間的距離為8個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達點E,此時他仰望兩棵大樹的頂點AD,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是(

A. 13s B. 8s C. 6s D. 5s

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).

(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關系;

(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點E,連接BE,將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,則CE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E,F分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BPEF于點Q,對于下列結論:①EF=2BE;②PF=2PE;③FQ=4EQ④△PBF是等邊三角形.其中正確的是( )

A. ①② B. ②③ C. ①③ D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列推理過程,將空白部分補充完整.

(1)如圖1,∠ABC=∠A1B1C1,BD,B1D1分別是∠ABC,∠A1B1C1的角平分線,對∠DBC=∠D1B1C1進行說理.

理由:因為BD,B1D1分別是∠ABC,∠A1B1C1的角平分線

所以∠DBC=   ,∠D1B1C1=   (角平分線的定義)

又因為∠ABC=∠A1B1C1

所以∠ABC=∠A1B1C1

所以∠DBC=∠D1B1C1   

(2)如圖2,EF∥AD,∠1=∠2,∠B=40°,求CDG的度數(shù).

因為EF∥AD,

所以∠2=      

又因為∠1=∠2 (已知)

所以∠1=   (等量代換)

所以AB∥GD(   

所以∠B=      

因為B=40°(已知)

所以∠CDG=   (等量代換)

(3)下面是積的乘方的法則“的推導過程,在括號里寫出每一步的依據(jù).

因為(ab)n=   

=   

=anbn   

所以(ab)n=anbn

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y= 的圖象上.若點B在反比例函數(shù)y= 的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上有三個點A、B、C,完成下列問題:

(1)將點B向右移動六個單位長度到點D,在數(shù)軸上表示出點D.

(2)在數(shù)軸上找到點E,使點EBA的中點(EA、C兩點的距離相等),井在數(shù)軸上標出點E表示的數(shù),求出CE的長.

(3)O為原點,取OC的中點M,分OC分為兩段,記為第一次操作:取這兩段OM、CM的中點分別為了N1、N2,將OC分為4段,記為第二次操作,再取這兩段的中點將OC分為8段,記為第三次操作,第六次操作后,OC之間共有多少個點?求出這些點所表示的數(shù)的和.

查看答案和解析>>

同步練習冊答案