【題目】一個直角三角形斜邊長為,內(nèi)切圓半徑為,則這個三角形周長是( )

A. B. C. D.

【答案】B

【解析】

設圓O的半徑是r,連接OD,OE,推出正方形DCEO,得出OD=OE=CD=CE,根據(jù)切線長定理求出AF=AD,BE=BF,CE=CD,根據(jù)AC-r+BC-r=AB求出AC+BC即可.

設圓O的半徑是r,連接ODOE.

∵圓O與邊AC、BC、AB分別切于點D. E.F,

ODACOEBC,AF=AD,BE=BFCE=CD,

∴四邊形ODCE是正方形,

OD=OE=CD=CE,

AF=AD=ACr,BF=BE=BCr

AB=AF+BF=(ACr)+(BCr),

ACr+BCr=AB=10cm,

AC+BC=12cm,

∴△ABC的周長是:AC+BC+AB=22cm.

故選:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某消防隊在一居民樓前進行演習,消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°65°,點A距地面2.5米,點B距地面10.5.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有四張正面分別標有數(shù)字2,1﹣3,﹣4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從四張卡片中隨機地摸取一張不放回,將該卡片上的數(shù)字記為m,再隨機地摸取一張,將卡片上的數(shù)字記為n

1)請畫出樹狀圖并寫出(m,n)所有可能的結(jié)果;

2)求所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過第二、三、四象限的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC是等邊三角形.

1)如圖(1),點E在線段AB上,點D在射線CB上,且ED=EC.將BCE繞點C順時針旋轉(zhuǎn)60°ACF,連接EF.猜想線段AB,DB,AF之間的數(shù)量關系;

2)點E在線段BA的延長線上,其它條件與(1)中一致,請在圖(2)的基礎上將圖形補充完整,并猜想線段ABDB,AF之間的數(shù)量關系;

3)請選擇(1)或(2)中的一個猜想進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題正確的是( )

A. 一組對邊相等,另一組對邊平行的四邊形一定是平行四邊形

B. 對角線相等的四邊形一定是矩形

C. 兩條對角線互相垂直的四邊形一定是菱形

D. 兩條對角線相等且互相垂直平分的四邊形一定是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線ACBD交于點O.過點CBD的平行線,過點DAC的平行線,兩直線相交于點E.

(1)求證:四邊形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面積是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形中,,,,上一點,延長線上一點,且

1)試說明:

2)在圖中,若點上,且,試猜想、之間的數(shù)量關系,并證明所歸納結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出如下定義:對于⊙O 的弦 MN 和⊙O 外一點 P(M,O,N 三點不共線,且點 P,O 在直線 MN 的異側(cè)),當∠MPN+∠MON=180°時,則稱點 P 是線段 MN 關于點 O 的關聯(lián)點.圖 1 是點 P 為線段 MN 關于點 O 的關聯(lián)點的示意圖.

在平面直角坐標系 xOy 中,⊙O 的半徑為 1.

(1)如圖 2,已知 M(,),N( ,﹣),在 A(1,0),B(1,1),C(,0)三點中,是線段 MN 關于點 O 的關聯(lián)點的是哪個點;

(2)如圖 3,M(0,1),N(,﹣),點 D 是線段 MN 關于點 O 的關聯(lián)點.

①求∠MDN 的大;

②在第一象限內(nèi)有一點 E(m,m),點 E 是線段 MN 關于點 O 的關聯(lián)點,判斷△MNE 的形狀,并直接寫出點 E 的坐標;

③點 F 在直線 y=﹣x+2 上,當∠MFN≥∠MDN 時,求點 F 的橫坐標 x 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°

1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);

2)連接BD,求證:BD平分∠CBA

查看答案和解析>>

同步練習冊答案