精英家教網(wǎng)已知:如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)、C(0,5)三點.
(1)求拋物線的函數(shù)關(guān)系式;
(2)若過點C的直線y=kx+b與拋物線相交于點E (4,m),請求出△CBE的面積S的值;
(3)寫出二次函數(shù)值大于一次函數(shù)值的x的取值范圍;
(4)在拋物線上是否存在點P使得△ABP為等腰三角形?若存在,請指出一共有幾個滿足條件的點P,并求出其中一個點的坐標(biāo);若不存在這樣的點P,請說明理由.
分析:(1)設(shè)拋物線y=ax2+bx+c=a(x-1)(x-5),把C的坐標(biāo)代入求出即可;
(2)求出E的坐標(biāo),把C(0,5),E(4,-3)代入y=kx+b得到方程組,求出方程組的解即可得到一次函數(shù)的解析式,求出直線與X軸的交點,根據(jù)三角形的面積公式求出即可;
(3)根據(jù)圖象即可求出答案;
(4)求出拋物線的頂點坐標(biāo),根據(jù)線段的垂直平分線性質(zhì)和等腰三角形的性質(zhì)求出即可.
解答:解:(1)∵A(1,0),B(5,0),
設(shè)拋物線y=ax2+bx+c=a(x-1)(x-5),
把C(0,5)代入得:5=a(0-1)(0-5),
解得:a=1,
∴y=(x-1)(x-5)=x2-6x+5,
答:拋物線的函數(shù)關(guān)系式是y=x2-6x+5.

(2)把x=4代入y=x2-6x+5得:y=-3,
∴E(4,-3),
把C(0,5),E(4,-3)代入y=kx+b得:
5=b
-3=
4k+b
,
解得:k=-2,b=5,
∴y=-2x+5,
CE交X軸于D,
當(dāng)y=0時,0=-2x+5,
∴x=
5
2
,
∴OD=
5
2
,
BD=5-
5
2
=
5
2
,
∴△CBE的面積是:S△CBD+S△EBD=
1
2
×
5
2
×5+
1
2
×
5
2
×|-3|=10,
答:△CBE的面積S的值是10.

(3)由圖象知:當(dāng)x<0或x>4時,二次函數(shù)值大于一次函數(shù)值,
答:二次函數(shù)值大于一次函數(shù)值的x的取值范圍是x<0或x>4.

(4)∵拋物線的頂點P(3,-4)既在拋物線的對稱軸上又在拋物線上,
∴點P(3,-4)為所求滿足條件的點.
除P點外,在拋物線上還存在其它的點P使得△ABP為等腰三角形.
理由如下:
∵AP=BP=
22+42
=2
5
>4,
∴分別以A、B為圓心半徑長為4畫圓,分別與拋物線交于點B、P1、P2、P3、A、P4、P5、P6,除去B、A兩個點外,其余6個點為滿足條件的點.
點評:本題主要考查對線段的垂直平分線性質(zhì),等腰三角形的性質(zhì),三角形的面積,一次函數(shù)、二次函數(shù)圖象上點的坐標(biāo)特征,用待定系數(shù)法求出二次函數(shù)的解析式等知識點的理解和掌握,綜合運用這些性質(zhì)進行計算是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點,它們的橫坐標(biāo)分別為-1和3,精英家教網(wǎng)與y軸交點C的縱坐標(biāo)為3,△ABC的外接圓的圓心為點M.
(1)求這條拋物線的解析式;
(2)求圖象經(jīng)過M、A兩點的一次函數(shù)解析式;
(3)在(1)中的拋物線上是否存在點P,使過P、M兩點的直線與△ABC的兩邊AB、BC的交點E、F和點B所組成的△BEF和△ABC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標(biāo);
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧化縣質(zhì)檢)已知:如圖,拋物線y=ax2+bx+c與x軸交于點A(1-
3
,0)和點B,將拋物線沿x軸向上翻折,頂點P落在點P′(1,3)處.
(1)求原拋物線的解析式;
(2)在原拋物線上,是否存在一點,與它關(guān)于原點對稱的點也在該拋物線上?若存在,求滿足條件的點的坐標(biāo);若不存在,說明理由.
(3)學(xué)校舉行班徽設(shè)計比賽,九年級(5)班的小明在解答此題時頓生靈感:過點P′作x軸的平行線交拋物線于C、D兩點,將翻折后得到的新圖象在直線CD以上的部分去掉,設(shè)計成一個“W”型的班徽,“5”的拼音開頭字母為W,“W”圖案似大鵬展翅,寓意深遠;而且小明通過計算驚奇的發(fā)現(xiàn)這個“W”圖案的高與寬(CD)的比非常接近黃金分割比
5
-1
2
(約等于0.618).請你計算這個“W”圖案的高與寬的比到底是多少?(參考數(shù)據(jù):
5
≈2.236
,
6
≈2.449
,結(jié)果精確到0.001)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A,B,點A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)若點M在拋物線上,且△ABC與△ABM的面積相等,直接寫出點M的坐標(biāo);
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(4)若平行于x軸的動直線l與線段AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出直線l的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,拋物線y=x2+px+q與x軸相交于A、B兩點,與y軸交于點C,且OA≠OB,OA=OC,設(shè)拋物線的頂點為點P,直線PC與x軸的交點D恰好與點A關(guān)于y軸對稱.
(1)求p、q的值.
(2)在題中的拋物線上是否存在這樣的點Q,使得四邊形PAQD恰好為平行四邊形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
(3)連接PA、AC.問:在直線PC上,是否存在這樣點E(不與點C重合),使得以P、A、E為頂點的三角形與△PAC相似?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案