【題目】如圖,梯形ABCD中,AD∥BC,AB=DC,點P是AD邊上一點,聯(lián)結(jié)PB、PC,且AB2=APPD,則圖中有對相似三角形.

【答案】3
【解析】解:∵AD∥BC,AB=DC, ∴梯形ABCD為等腰梯形,
∴∠A=∠D,
∵AB2=APPD,
∴ABCD=APPD,即 = ,
∴△ABP∽△DPC,
∴∠ABP=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,∠APB=∠PBC,
∴∠PCB=∠ABP,
∴△ABP∽△PCB,
∴△DPC∽△DPC.
所以答案是3.
【考點精析】根據(jù)題目的已知條件,利用相似三角形的判定的相關(guān)知識可以得到問題的答案,需要掌握相似三角形的判定方法:兩角對應相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應成比例且夾角相等,兩三角形相似(SAS);三邊對應成比例,兩三角形相似(SSS).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人都從A出發(fā)經(jīng)B地去C地,乙比甲晚出發(fā)1分鐘,兩人同時到達B地,甲在B地停留1分鐘,乙在B地停留2分鐘,他們行走的路程y(米)與甲行走的時間x(分鐘)之間的函數(shù)關(guān)系如圖所示,則下列說法中正確的個數(shù)有( ) ①甲到B地前的速度為100m/min
②乙從B地出發(fā)后的速度為300m/min
③A、C兩地間的路程為1000m
④甲乙再次相遇時距離C地300km.

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某中學九年級學生中考體育成績情況,現(xiàn)從中抽取部分學生的體育成績進行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)統(tǒng)計,統(tǒng)計結(jié)果如圖所示.
根據(jù)上面提供的信息,回答下列問題:
(1)本次抽查了多少名學生的體育成績;
(2)補全圖9.1,求圖9.2中D分數(shù)段所占的百分比;
(3)已知該校九年級共有900名學生,請估計該校九年級學生體育成績達到40分以上(含40分)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x1 , x2是關(guān)于x的一元二次方程x2﹣mx+m﹣2=0的兩個實數(shù)根,是否存在實數(shù)m使 + =0成立?則正確的結(jié)論是(
A.m=0時成立
B.m=2時成立
C.m=0或2時成立
D.不存在

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給定直線l:y=kx,拋物線C:y=ax2+bx+1.

(1)當b=1時,l與C相交于A,B兩點,其中A為C的頂點,B與A關(guān)于原點對稱,求a的值;
(2)若把直線l向上平移k2+1個單位長度得到直線l′,則無論非零實數(shù)k取何值,直線l′與拋物線C都只有一個交點.
①求此拋物線的解析式;
②若P是此拋物線上任一點,過P作PQ∥y軸且與直線y=2交于Q點,O為原點.求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系內(nèi),已知直線y=x+4與x軸、y軸分別相交于點A和點C,拋物線y=x2+kx+k﹣1圖象過點A和點C,拋物線與x軸的另一交點是B,

(1)求出此拋物線的解析式、對稱軸以及B點坐標;
(2)若在y軸負半軸上存在點D,能使得以A、C、D為頂點的三角形與△ABC相似,請求出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,點D在邊AB上,線段DC繞點D逆時針旋轉(zhuǎn),端點C恰巧落在邊AC上的點E處.如果 =m, =n.那么m與n滿足的關(guān)系式是:m=(用含n的代數(shù)式表示m).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(4,0),B(3,3),以AO,AB為邊作平行四邊形OABC,則經(jīng)過C點的反比例函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中,是軸對稱圖形,不是中心對稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案