已知正方形ABCD的邊長(zhǎng)為12,E,F(xiàn)分別是AD,CD上的點(diǎn),且EF=10,∠EBF=45°,則AE的長(zhǎng)為_(kāi)_____.
延長(zhǎng)DA到M點(diǎn),使MA=FC,連接BM,
∵正方形ABCD的邊長(zhǎng)為12,
∴AB=BC=CD=DA=12,∠D=∠C=∠CBA=∠DAB=90°,
∴∠BAM=90°,
∵在△ABM和△CBF中,
AM=CF
∠BAM=∠C
AB=CB

∴△ABM≌△CBF(SAS),
∴∠CBF=∠ABM,BF=BM,
∵∠EBF=45°,
∴∠ABE+∠CBF=45°,
∴∠ABE+∠ABM=45°,即∠EBM=45°,
在△FBE和△MBE中,
BE=BE
∠EBF=∠EBM
BF=BM
,
∴△FBE≌△MBE(SAS),
∴EM=EF,
∵EF=10,
∴DF2+DE2=EF2,
AE+AM=10,
設(shè)AE=x,F(xiàn)C=y,
則DF=12-y,DE=12-x,
x+y=10
(12-x)2+(12-y)2=102

∴整理方程組得
y=10-x①
(12-x)2+(12-y)2=100
,
∴把①代入②得:x2-10x+24=0,
∴(x-4)(x-6)=0,
∴x1=6,x2=4,
∴AE=6或AE=4.
故答案為6或者4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,DE平分∠ODC交OC于點(diǎn)E,若AB=2,則線段OE的長(zhǎng)為( 。
A.
2
2
B.
2
2
3
C.2-
2
D.
2
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).且規(guī)定,正方形的內(nèi)部不包含邊界上的點(diǎn).觀察如圖所示的中心在原點(diǎn)、一邊平行于x軸的正方形:邊長(zhǎng)為1的正方形內(nèi)部有1個(gè)整點(diǎn),邊長(zhǎng)為3的正方形內(nèi)部有9個(gè)整點(diǎn),…,則邊長(zhǎng)為8的正方形內(nèi)部整點(diǎn)個(gè)數(shù)為(  )
A.64B.49C.36D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)已知:如圖1,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)為DC上一點(diǎn),且∠1=∠2,求證:AF=BC+FC;
(2)已知:如圖2,把三角尺的直角頂點(diǎn)落在矩形ABCD的對(duì)角線交點(diǎn)P處,若旋轉(zhuǎn)三角尺時(shí),它的兩條直角邊與矩形的兩邊BC、CD分別相交于M、N,試證:MN2=BM2+DN2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)正方形ABCD的邊CD的中點(diǎn)為E,F(xiàn)是CE的中點(diǎn)(圖).求證:∠DAE=
1
2
∠BAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

邊長(zhǎng)為4的正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),P是對(duì)角線AC上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PF⊥CD于點(diǎn)F,作PE⊥PB交直線CD于點(diǎn)E,設(shè)PA=x,S△PCE=y,
(1)求證:DF=EF;
(2)當(dāng)點(diǎn)P在線段AO上時(shí),求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,△PEC能否為等腰三角形?如果能夠,請(qǐng)直接寫出PA的長(zhǎng);如果不能,請(qǐng)簡(jiǎn)單說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,O為正方形ABCD的對(duì)角線AC與BD的交點(diǎn),M、N兩點(diǎn)分別在BC與AB上,且OM⊥ON.
(1)試說(shuō)明OM=ON;
(2)試判斷CN與DM的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD為正方形,DEAC,AE=AC,AE與CD相交于F.
求證:CE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD的邊長(zhǎng)為1cm,E、F分別是BC、CD的中點(diǎn),連接BF、DE,則圖中陰影部分的面積是______cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案