【題目】某小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線圖,則符合這一結(jié)果的實驗最有可能的是( )
A. 在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
B. 擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點數(shù)是4
C. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃
D. 拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王明同學(xué)隨機(jī)抽查某市個小區(qū)所得到的綠化率情況,結(jié)果如下表:
小區(qū)綠化率 | ||||
小區(qū)個數(shù) |
則關(guān)于這個小區(qū)的綠化率情況,下列說法錯誤的是( )
A. 極差是13% B. 眾數(shù)是25% C. 中位數(shù)是25% D. 平均數(shù)是26.2%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是平行四邊形ABCD的對稱中心,將直線DB繞點O順時針方向旋轉(zhuǎn),交DC、AB于點E、F.
(1)證明:△DEO≌△BFO;
(2)若DB=2,AD=1,AB=,當(dāng)DB繞點O順時針方向旋轉(zhuǎn)45°時,判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.
(1)求證:AC是⊙O的切線;
(2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,過B作一直線與CD相交于點E,過A作AF垂直BE于點F,過C作CG垂直BE于點G,在FA上截取FH=FB,再過H作HP垂直AF交AB于P.若CG=3.則△CGE與四邊形BFHP的面積之和為 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文化,源遠(yuǎn)流長,在文學(xué)方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學(xué)為了了解學(xué)生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩個不完整的統(tǒng)計圖,請結(jié)合圖中信息解決下列問題:
(1)本次調(diào)查了 名學(xué)生,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為 度,并補(bǔ)全條形統(tǒng)計圖;
(2)此中學(xué)共有1600名學(xué)生,通過計算預(yù)估其中4部都讀完了的學(xué)生人數(shù);
(3)沒有讀過四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來閱讀,求他們選中同一名著的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,AB是⊙O的直徑,OD⊥弦BC于點F,交⊙O于點E,連結(jié)CE、AE、CD,若∠AEC=∠ODC.
(1)求證:直線CD為⊙O的切線;
(2)若AB=5,BC=4,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知線段a,P為線段a上任意一點,已知圖形M,Q為圖形M上任意一點,當(dāng)P,Q兩點間的距離最小時,將此時PQ的長度稱為圖形M與線段a的近點距;當(dāng)P,Q兩點間的距離最大時,將此時PQ的長度稱為圖形M與線段a的遠(yuǎn)點距.
根據(jù)閱讀材料解決下列問題:
如圖1,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(﹣2,﹣2),正方形ABCD的對稱中心為原點O.
(1)線段AB與線段CD的近點距是 ,遠(yuǎn)點距是 .
(2)如圖2,直線y=﹣x+6與x軸,y軸分別交于點E,F,則線段EF和正方形ABCD的近點距是 ,遠(yuǎn)點距是 ;
(3)直線y=x+b(b≠0)與x軸,y軸分別交于點R,S,線段RS與正方形ABCD的近距點是,則b的值是 ;
(4)在平面直角坐標(biāo)系xOy中,有一個矩形GHMN,若此矩形至少有一個頂點在以O為圓心1為半徑的圓上,其余各點可能在圓上或圓內(nèi),將正方形ABCD繞點O旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,它與矩形GHMN的近點距的最小值是 ,遠(yuǎn)點距的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個圓柱形玻璃杯高,底面周長為,有一只螞蟻在一側(cè)距下底的外側(cè)點,與點正對的容器內(nèi)側(cè)距下底的點處有一飯粒,螞蟻想吃處的飯粒,要從杯子的外側(cè)爬到杯子的內(nèi)側(cè),杯子的厚度忽略不計,則至少需要爬________________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com