【題目】如圖,四 邊形OABC是矩形,點(diǎn)A、C在坐標(biāo)軸上,△ODE是由△OCB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的,點(diǎn)D在X軸上,直線BD交Y軸于點(diǎn)F,交OE于點(diǎn)H,線段BC、OC的長是方程x2-6x+8=0的兩個(gè)根,且OC>BC.

(1)求直線BD的解析式.

(2)求 △OFH的面積.

(3)點(diǎn)M在坐標(biāo)軸上,平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)D、F、M、N為頂點(diǎn)的四邊形是矩形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】解:y=-x+;(2);(3)存在滿足條件的N點(diǎn),其坐標(biāo)為(,-)或(-4,-)或(4,).

【解析】

(1)解方程可求得OC、BC的長,可求得B、D的坐標(biāo),利用待定系數(shù)法可求得直線BD的解析式;

(2)可求得E點(diǎn)坐標(biāo),求出直線OE的解析式,聯(lián)立直線BD、OE解析式可求得H點(diǎn)的橫坐標(biāo),可求得OFH的面積;

(3)當(dāng)MFD為直角三角形時(shí),可找到滿足條件的點(diǎn)N,分∠MFD=90°、MDF=90°和∠FMD=90°三種情況,分別求得M點(diǎn)的坐標(biāo),可分別求得矩形對(duì)角線的交點(diǎn)坐標(biāo),再利用中點(diǎn)坐標(biāo)公式可求得N點(diǎn)坐標(biāo).

(1)解方程x2-6x+8=0可得x=2x=4,

BC、OC的長是方程x2-6x+8=0的兩個(gè)根,且OC>BC,

BC=2,OC=4,

B(-2,4),

∵△ODEOCB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的,

OD=OC=4,DE=BC=2,

D(4,0),

設(shè)直線BD解析式為y=kx+b,

B、D坐標(biāo)代入可得,解得,

∴直線BD的解析式為y=-x+;

(2)由(1)可知E(4,2),

設(shè)直線OE解析式為y=mx,

E點(diǎn)坐標(biāo)代入可求得m=,

∴直線OE解析式為y=x,

,解得x=

H點(diǎn)到y軸的距離為,

又由(1)可得F(0,),

OF=

SOFH=××=;

(3)∵以點(diǎn)D、F、M、N為頂點(diǎn)的四邊形是矩形,

∴△DFM為直角三角形,

①當(dāng)∠MFD=90°時(shí),則M只能在x軸上,連接FNMD于點(diǎn)G,如圖1,

由(2)可知OF=,OD=4,

則有MOF∽△FOD,

,即,解得OM=,

M(-,0),且D(4,0),

G(,0),

設(shè)N點(diǎn)坐標(biāo)為(x,y),則,,

解得x=,y=-,此時(shí)N點(diǎn)坐標(biāo)為(,-);

②當(dāng)∠MDF=90°時(shí),則M只能在y軸上,連接DNMF于點(diǎn)G,如圖2,

則有FOD∽△DOM,

,即,解得OM=6,

M(0,-6),且F(0,),

MG=MF=,則OG=OM-MG=6-=,

G(0,-),

設(shè)N點(diǎn)坐標(biāo)為(x,y),則 =0,

解得x=-4,y=-,此時(shí)N(-4,-);

③當(dāng)∠FMD=90°時(shí),則可知M點(diǎn)為O點(diǎn),如圖3,

∵四邊形MFND為矩形,

NF=OD=4,ND=OF=,

可求得N(4,);

綜上可知存在滿足條件的N點(diǎn),其坐標(biāo)為(,-)或(-4,-)或(4,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在直線跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步500m,先到終點(diǎn)

的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時(shí)間t(s)之間的關(guān)系

如圖所示,給出以下結(jié)論:a=8;b=92;c=123.其中正確的是【 】

A.①②③ B.僅有①② C.僅有①③ D.僅有②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,是過點(diǎn)的一條直線,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,連接,,,其中,分別交直線于點(diǎn).

1)若),請(qǐng)用的代數(shù)式表示

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】海靜中學(xué)開展以“我最喜愛的職業(yè)”為主題的調(diào)查活動(dòng),圍繞“在演員、教師、醫(yī)生、律師、公務(wù)員共五類職業(yè)中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問題:

(1)本次調(diào)查共抽取了多少名學(xué)生?

(2)求在被調(diào)查的學(xué)生中,最喜愛教師職業(yè)的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若海靜中學(xué)共有1500名學(xué)生,請(qǐng)你估計(jì)該中學(xué)最喜愛律師職業(yè)的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A6,0),B04),點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為C點(diǎn),點(diǎn)Dx軸的負(fù)半軸上,ABD的面積是30

1)求點(diǎn)D坐標(biāo);

2)若動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC運(yùn)動(dòng),速度為每秒1個(gè)單位,設(shè)P的運(yùn)動(dòng)時(shí)間為t秒,APC的面積為S,求St的關(guān)系式;

3)在(2)的條件下,同時(shí)點(diǎn)QD點(diǎn)出發(fā)沿x軸正方向以每秒2個(gè)單位速度勻速運(yùn)動(dòng),若點(diǎn)R在過A點(diǎn)且平行于y軸的直線上,當(dāng)PQR為以PQ為直角邊的等腰直角三角形時(shí),求滿足條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織一項(xiàng)公益知識(shí)競(jìng)賽,比賽規(guī)定:每個(gè)班級(jí)由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場(chǎng)參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場(chǎng)參賽的概率.(請(qǐng)用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

(1)把△ABC向上平移3個(gè)單位,再向右平移2個(gè)單位得△A′B′C′,在圖中畫出兩次平移后得到的圖形△A′B′C′,并寫出A′、B′、C′的坐標(biāo).

(2)如果△ABC內(nèi)部有一點(diǎn)Q,根據(jù)(1)中所述平移方式得到對(duì)應(yīng)點(diǎn)Q′,如果點(diǎn)Q′坐標(biāo)是(m,n),那么點(diǎn)Q的坐標(biāo)是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,均是邊長為的等邊三角形,點(diǎn)是邊、的中點(diǎn),直線、相交于點(diǎn).當(dāng)繞點(diǎn)旋轉(zhuǎn)時(shí),線段長的最小值是(

A. 2- B. +1 C. D. -1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】永州市在進(jìn)行六城同創(chuàng)的過程中,決定購買兩種樹對(duì)某路段進(jìn)行綠化改造,若購買種樹2, 種樹3,需要2700元;購買種樹4, 種樹5,需要4800.

(1)求購買兩種樹每棵各需多少元?

(2)考慮到綠化效果,購進(jìn)A種樹不能少于48,且用于購買這兩種樹的資金不低于52500.若購進(jìn)這兩種樹共100.問有哪幾種購買方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案