如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點(diǎn)C.
(1)求拋物線的解析式;
(2)在拋物線(對稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請說明理由;
(3)如圖②,E為BC延長線上一動(dòng)點(diǎn),過A、B、E三點(diǎn)作⊙O′,連接AE,在⊙O′上另有一點(diǎn)F,且AF=AE,AF交BC于點(diǎn)G,連接BF.下列結(jié)論:①BE+BF的值不變;②
BF
AF
=
BG
AG
,其中有且只有一個(gè)成立,請你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論.
(1)由Rt△AOB≌Rt△CDA,得OD=2+1=3,CD=1
∴C點(diǎn)坐標(biāo)為(-3,1),
∴拋物線經(jīng)過點(diǎn)C,
∴1=a(-3)2+a(-3)-2,
∴a=
1
2

∴拋物線的解析式為y=
1
2
x2+
1
2
x-2

(2)在拋物線(對稱軸的右側(cè))上存在點(diǎn)P、Q,使四邊形ABPQ是正方形.
以AB為邊在AB的右側(cè)作正方形ABPQ,過P作PE⊥OB于E,QG⊥x軸于G,可證△PBE≌△AQG≌△BAO,
∴PE=AG=BO=2,BE=QG=AO=1,
∴P點(diǎn)坐標(biāo)為(2,1),Q點(diǎn)坐標(biāo)為(1,-1).
由(1)拋物線y=
1
2
x2+
1
2
x-2
當(dāng)x=2時(shí),y=1;當(dāng)x=1時(shí),y=-1.
∴P、Q在拋物線上.
故在拋物線(對稱軸的右側(cè))上存在點(diǎn)P(2,1)、Q(1,-1),使四邊形ABPQ是正方形.

(2)另在拋物線(對稱軸右側(cè))上存在點(diǎn)P、Q,使四邊形ABPQ是正方形.
延長CA交拋物線于Q,過B作BPCA交拋物線于P,連PQ,設(shè)直線CA、BP的解析式分別為y=k1x+b1;y=k2x+b2
∵A(-1,0),C(-3,1),
∴CA的解析式為y=-
1
2
x-
1
2
,
同理得BP的解析式y(tǒng)=-
1
2
x+2,
解方程組
y=-
1
2
x-
1
2
y=
1
2
x2+
1
2
x-2
,
得Q點(diǎn)坐標(biāo)為(1,-1),
同理得P點(diǎn)坐標(biāo)為(2,1)
由勾股定理得AQ=BP=AB=
5
,而∠BAQ=90°,四邊形ABPQ是正方形,
故在拋物線(對稱軸右側(cè))上存在點(diǎn)P(2,1)、Q(1,-1),使四邊形ABPQ是正方形.
(3)結(jié)論②
BF
AF
=
BG
AG
成立,
證明如下:連EF,過F作FMBG交AB的延長線于M,則△AMF△ABG,
MF
AF
=
BG
AG

由(1)知△ABC是等腰直角三角形,
∴∠1=∠2=45°
∵AF=AE
∴∠AEF=∠1=45°,
∴∠EAF=90°,
∴EF是⊙O的直徑.
∴∠EBF=90°,
∵FMBG,
∴∠MFB=∠EBF=90°,∠M=∠2=45°,
∴BF=MF,
BF
AF
=
BG
AG
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,拋物線y=ax2+bx+c經(jīng)過原點(diǎn)O,與x軸交于另一點(diǎn)N,直線y=kx+4與兩坐標(biāo)軸分別交于A、D兩點(diǎn),與拋物線交于B(1,m)、C(2,2)兩點(diǎn).
(1)求直線與拋物線的解析式;
(2)若拋物線在x軸上方的部分有一動(dòng)點(diǎn)P(x,y),設(shè)∠PON=α,求當(dāng)△PON的面積最大時(shí)tanα的值;
(3)若動(dòng)點(diǎn)P保持(2)中的運(yùn)動(dòng)路線,問是否存在點(diǎn)P,使得△POA的面積等于△PON面積的
8
15
?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-
5
4
x2+
17
4
x+1與y軸交于A點(diǎn),過點(diǎn)A的直線與拋物線交于另一點(diǎn)B,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(3,0)
(1)求直線AB的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)P在線段OC上從原點(diǎn)出發(fā)以每秒一個(gè)單位的速度向C移動(dòng),過點(diǎn)P作PN⊥x軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N.設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,MN的長度為s個(gè)單位,求s與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)設(shè)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O,點(diǎn)C重合的情況),連接CM,BN,當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC是邊長為4的等邊三角形,AB在x軸上,點(diǎn)C在第一象限,AC交y軸于點(diǎn)D,點(diǎn)A的坐標(biāo)為(-1,0).
(1)求B、C、D三點(diǎn)的坐標(biāo);
(2)拋物線y=ax2+bx+c經(jīng)過B、C、D三點(diǎn),求它的解析式;
(3)過點(diǎn)D作DEAB交經(jīng)過B、C、D三點(diǎn)的拋物線于點(diǎn)E,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)),與y軸交于點(diǎn)C(0,2).
(1)請說明a、b、c的乘積是正數(shù)還是負(fù)數(shù);
(2)若∠OCA=∠CBO,求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在學(xué)校田徑運(yùn)動(dòng)會(huì)上,九年級(jí)的一名高個(gè)子男生拋實(shí)心球,已知實(shí)心球所經(jīng)過的路線是某個(gè)二次函數(shù)圖象的一部分,如圖所示,如果這個(gè)男生的拋球處A點(diǎn)坐標(biāo)為(0,2),實(shí)心球在空中線路的最高點(diǎn)B點(diǎn)的坐標(biāo)是(6,5).
(1)求這個(gè)二次函數(shù)解析式;
(2)若拋出13.5米或大于13.5米遠(yuǎn)為“好成績”,問該男生在這次拋擲中,能取得“好成績”嗎?試通過計(jì)算說明.(
15
≈3.873)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

王亮同學(xué)善于改進(jìn)學(xué)習(xí)方法,他發(fā)現(xiàn)對解題過程進(jìn)行回顧反思,效果會(huì)更好.某一天他利用30分鐘時(shí)間進(jìn)行自主學(xué)習(xí).假設(shè)他用于解題的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖甲所示,用于回顧反思的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過用于解題的時(shí)間.

(1)求王亮解題的學(xué)習(xí)收益量y與用于解題的時(shí)間x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求王亮回顧反思的學(xué)習(xí)收益量y與用于回顧反思的時(shí)間x之間的函數(shù)關(guān)系式;
(3)王亮如何分配解題和回顧反思的時(shí)間,才能使這30分鐘的學(xué)習(xí)收益總量最大?
(學(xué)習(xí)收益總量=解題的學(xué)習(xí)收益量+回顧反思的學(xué)習(xí)收益量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,某建筑物有一拋物線形的大門,小強(qiáng)想知道這道門的高度.他先測出門的寬度AB=8m,然后用一根長為4m的小竹竿CD豎直地接觸地面和門的內(nèi)壁,并測得AC=1m.小強(qiáng)畫出了如圖的草圖,請你幫他算一算門的高度OE(精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

崇左市政府大樓前廣場有一噴水池,水從地面噴出,噴出水的路徑是一條拋物線.如果以水平地面為x軸,建立如圖所示的平面直角坐標(biāo)系,水在空中劃出的曲線是拋物線y=-x2+4x(單位:米)的一部分.則水噴出的最大高度是______米.

查看答案和解析>>

同步練習(xí)冊答案