【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線(xiàn)y=a(x-m)2+n的頂點(diǎn)在線(xiàn)段AB上運(yùn)動(dòng),與x軸交于C、D兩點(diǎn)(CD的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為-3,則點(diǎn)D的橫坐標(biāo)最大值為______

【答案】8

【解析】

當(dāng)拋物線(xiàn)y=ax-m2+n的頂點(diǎn)在線(xiàn)段ABA點(diǎn)上時(shí),點(diǎn)C的橫坐標(biāo)最小把A的坐標(biāo)代入即可求出a的值,因?yàn)閽佄锞(xiàn)y=ax-m2+n的頂點(diǎn)在線(xiàn)段AB上運(yùn)動(dòng),所以?huà)佄锞(xiàn)的a永遠(yuǎn)等于-,根據(jù)題意可知當(dāng)拋物線(xiàn)的頂點(diǎn)運(yùn)動(dòng)到B時(shí),D的橫坐標(biāo)最大,把B的坐標(biāo)和a的值代入即可求出二次函數(shù)的解析式,再求出y=0時(shí)x的值即可求出答案.

解:當(dāng)拋物線(xiàn)y=ax-m2+n的頂點(diǎn)在線(xiàn)段ABA點(diǎn)上時(shí),點(diǎn)C的橫坐標(biāo)最小,

A1,4)代入得:y=ax-12+4,

C-3,0)代入得:0=a-3-12+4,

解得:a=-,

即:y=-x-12+4,

拋物線(xiàn)y=ax-m2+n的頂點(diǎn)在線(xiàn)段AB上運(yùn)動(dòng),

拋物線(xiàn)的a永遠(yuǎn)等于-,

當(dāng)拋物線(xiàn)的頂點(diǎn)運(yùn)動(dòng)到B時(shí),D的橫坐標(biāo)最大,把a=-B44)代入y=ax-m2+n得:

y=-x-42+4,

當(dāng)y=0時(shí),0=-x-42+4,

解得:x1=0,x2=8,

∵CD的左側(cè),

點(diǎn)D的橫坐標(biāo)最大值是8

故答案為:8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對(duì)稱(chēng)軸是直線(xiàn)x=1.

b24ac;

4a﹣2b+c<0;

不等式ax2+bx+c>0的解集是x≥3.5;

若(﹣2,y1),(5,y2)是拋物線(xiàn)上的兩點(diǎn),則y1<y2

上述4個(gè)判斷中,正確的是( 。

A.①② B①④ C①③④ D②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】9分)如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹(shù)BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹(shù)頂端B的仰角是30,朝大樹(shù)方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹(shù)頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹(shù)的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn)A(1,0),點(diǎn)A第一次跳動(dòng)至點(diǎn),第二次點(diǎn)跳動(dòng)至點(diǎn)第三次點(diǎn)跳動(dòng)至點(diǎn),第四次點(diǎn)跳動(dòng)至點(diǎn)……,依此規(guī)律跳動(dòng)下去,則點(diǎn)與點(diǎn)之間的距離是(

A. 2017B. 2018C. 2019D. 2020

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(-1,0),(3,0).對(duì)于下列命題:①b-2a=0;abc<0;4a-2b+c<0.其中正確的有(  )

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=1,A=45°,邊長(zhǎng)為1的正方形的一個(gè)頂點(diǎn)D在邊AC上,與△ABC另兩邊分別交于點(diǎn)E、F,DEAB,將正方形平移,使點(diǎn)D保持在AC上(D不與A重合),設(shè)AF=x,正方形與△ABC重疊部分的面積為y.

(1)yx的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍;

(2)x為何值時(shí)y的值最大?

(3)x在哪個(gè)范圍取值時(shí)y的值隨x的增大而減小?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線(xiàn)BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí),

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫(xiě)在橫線(xiàn)上)

(2)數(shù)學(xué)思考

如圖2,當(dāng)點(diǎn)D在線(xiàn)段CB的延長(zhǎng)線(xiàn)上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,請(qǐng)求出GE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,菱形ABCD中,點(diǎn)E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,且BE=BF=DH=DG.

(1)求證:四邊形EFGH是矩形;

(2)已知∠B=60°,AB=6.

請(qǐng)從A,B兩題中任選一題作答,我選擇   題.

A題:當(dāng)點(diǎn)EAB的中點(diǎn)時(shí),矩形EFGH的面積是   

B題:當(dāng)BE=   時(shí),矩形EFGH的面積是8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線(xiàn)段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;點(diǎn)OO′的距離為4;③∠AOB=150°;④S四邊形AOBO;⑤SAOC+SAOB=.其中正確的結(jié)論是( 。

A.①②③⑤B.①②③④C.①②③④⑤D.①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案