精英家教網 > 初中數學 > 題目詳情
如圖,已知A(-3,1),B(a,-3),是一次函數y=kx+b的圖象與反比例函數y=
mx
精英家教網的圖象的兩個交點.
(1)求此一次函數和反比例函數的解析式;
(2)求△AOB的面積;
(3)根據圖象寫出一次函數的值大于反比例函數的值的x的取值范圍.
分析:(1)因為A(-3,1)、B(a,-3)是一次函數y=kx+b的圖象與反比例函數 y=
m
x
的圖象的兩個交點,把A點坐標代入反比例函數解析式,即可求出m,確定出反比例解析式,然后把B點坐標代入即可求出a的值,從而求出B點坐標,進而把求出的A、B點的坐標代入一次函數y=kx+b的解析式,得到關于k和b的二元一次方程組,求出方程組的解就可求出k、b的值;
(2)設一次函數與y軸交于點D,求出點D的坐標,所以y軸把△AOB的面積分為△AOD和△BOD的面積之和,利用點D縱坐標的絕對值,分別乘以點A和點B橫坐標的絕對值,由三角形的面積公式即可求出△AOD和△BOD的面積之和,進而得到△AOB的面積;
(3)根據圖象,分別觀察交點的那一側能夠使一次函數的值大于反比例函數的值,從而求得x的取值范圍.
解答:解:(1)∵點A(-3,1)和點B(a,-3)都在反比例函數y=
m
x
的圖象上,
∴m=-3×1=-3,故反比例解析式為y=-
3
x
,
把B(a,-3)代入反比例解析式得:a=1,即B(1,-3),
又由點A(-3,1)和點B(1,-3)都在一次函數y=kx+b的圖象上,
-3k+b=1
k+b=-3
,
解得
k=-1
b=-2

∴反比例函數的解析式為y=-
3
x
,一次函數的解析式為y=-x-2;
精英家教網
(2)設一次函數y=-x-2與y軸的交點為D,則點D坐標為(0,-2),
根據題意得:S△AOB=S△AOD+S△BOD
則S△AOB=
1
2
×|-2|×|-3|+
1
2
×|-2|×1=4;

(3)由圖象得:滿足題意的x的取值范圍為x<-3或0<x<1.
點評:本題考查了反比例函數與一次函數的交點問題,難度較大.要求學生能夠熟練運用待定系數法求得函數的解析式;能夠運用數形結合的思想觀察兩個函數值的大小關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知△ABC內接于⊙O,過A作⊙O的切線,與BC的延長線交于D,且AD=
3
+1
,CD精英家教網=2,∠ADC=30°
(1)AC與BC的長;
(2)求∠ABC的度數;
(3)求弓形AmC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

30、如圖,已知直線a,b與直線c相交,下列條件中不能判定直線a與直線b平行的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

40、尺規(guī)作圖:如圖,已知直線BC及其外一點P,利用尺規(guī)過點P作直線BC的平行線.(用兩種方法,不要求寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知:DE∥BC,AB=14,AC=18,AE=10,則AD的長為( 。
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中數學 來源: 題型:

13、如圖,已知直線AB∥CD,∠1=50°,則∠2=
50
度.

查看答案和解析>>

同步練習冊答案