【題目】如圖,BDABC的中線,ABD的周長(zhǎng)比BCD的周長(zhǎng)多2 cm.ABC的周長(zhǎng)為18 cm,且AC4 cm,求ABBC的長(zhǎng)..

【答案】AB8 cm,BC6 cm.

【解析】

BDABC的中線,可得AD=CD=AC,由ABD的周長(zhǎng)比BCD的周長(zhǎng)大2cm,可得AB-BC=2①,由ABC的周長(zhǎng)為18cm,且AC=4cm,可得4+AB+BC=18②,
聯(lián)立①②即可求出ABBC的長(zhǎng).

由題意知CABC18 cm,AC4 cm,∴ABBC14 cm①,

∵點(diǎn)DAC的中點(diǎn),∴ADDC,

CABDCBCD2 cm,

(ABBDAD)(BCBDDC)2 cm,即ABBC2 cm②,

由①②得AB8 cm,BC6 cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)在圖中畫出△ABC與關(guān)于y軸對(duì)稱的圖形△A1B1C1,并寫出頂點(diǎn)A1、B1、C1的坐標(biāo);

(2)若將線段A1C1平移后得到線段A2C2,且A2(a,2),C2(-2,b),求a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知Aa,0),B0,b),且滿足a

1)求A、B兩點(diǎn)坐標(biāo);

2)在(1)的條件下,Q為直線AB上一點(diǎn),且滿足SAOQ2SBOQ,求Q點(diǎn)的縱坐標(biāo);

3)如圖(2),E點(diǎn)在y軸上運(yùn)動(dòng),且在B點(diǎn)上方,過EAB的平行線,交x軸于點(diǎn)C,∠CEO的平分線與∠BAO的平分線交于點(diǎn)F.問:點(diǎn)E在運(yùn)動(dòng)過程中,∠F的大小是否發(fā)生改變?若改變,請(qǐng)說明理由;若不變,請(qǐng)求出它的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的部分圖象如圖所示,與x軸的一個(gè)交點(diǎn)坐標(biāo)為,拋物線的對(duì)稱軸是下列結(jié)論中:

;;方程有兩個(gè)不相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為;若點(diǎn)在該拋物線上,則

其中正確的有  

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)操作發(fā)現(xiàn):如圖1,D是等邊三角形ABCBA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊三角形DCF,連接AF.你能發(fā)現(xiàn)線段AFBD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論.

2)類比猜想:如圖2,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)到等邊三角形ABCBA的延長(zhǎng)線上時(shí),其他作法與(1)相同,猜想AFBD在(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)證明;如果不成立,是否有新的結(jié)論?如果有新的結(jié)論,直接寫出新的結(jié)論,不需證明.

3)深入探究:①如圖3,當(dāng)動(dòng)點(diǎn)D在等邊三角形ABC的邊BA上運(yùn)動(dòng)時(shí)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在其上方、下方分別作等邊三角形DCF和等邊三角形DCF',連接AF,BF′.探究AF,BF′AB有何數(shù)量關(guān)系?并證明你發(fā)現(xiàn)的結(jié)論。

②如圖4,當(dāng)動(dòng)點(diǎn)D在等邊三角形ABC的邊BA的延長(zhǎng)線上運(yùn)動(dòng)時(shí),其他作法與圖3相同,①中的結(jié)論是否仍然成立?如果成立,請(qǐng)證明;如果不成立,是否有新的結(jié)論?如果有新的結(jié)論,直接寫出新的結(jié)論,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備租用一批汽車,現(xiàn)有甲、乙兩種客車,甲種客車每輛載客量45人,乙種客車每輛載客量30.已知1輛甲種客車和3輛乙種客車共需租金1240元,3輛甲種客車和2輛乙種客車共需租金1760.1輛甲種客車和1輛乙種客車的租金分別是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(jí)1)班學(xué)生在完成課題學(xué)習(xí)體質(zhì)健康測(cè)試中的數(shù)據(jù)分析后,利用課外活動(dòng)時(shí)間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長(zhǎng)跑、鉛球中選一項(xiàng)進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測(cè)試現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時(shí)定點(diǎn)投籃測(cè)試成績(jī)整理后作出如下統(tǒng)計(jì)圖

請(qǐng)你根據(jù)上面提供的信息回答下列問題:

1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人, 訓(xùn)練后籃球定時(shí)定點(diǎn)投籃平均每個(gè)人的進(jìn)球數(shù)是

2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測(cè)試,請(qǐng)用列表或畫樹形圖的方法求恰好選中兩名男生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,是等邊三角形,是直線上一點(diǎn),以為頂點(diǎn)做 交過且平行于的直線于,求證:;當(dāng)的中點(diǎn)時(shí),(如圖1)小明同學(xué)很快就證明了結(jié)論:他的做法是:取的中點(diǎn),連結(jié),然后證明 從而得到,我們繼續(xù)來研究:

1)如圖2、當(dāng)DBC上的任意一點(diǎn)時(shí),求證:

2)如圖3、當(dāng)DBC的延長(zhǎng)線上時(shí),求證:

3)當(dāng)的延長(zhǎng)線上時(shí),請(qǐng)利用圖4畫出圖形,并說明上面的結(jié)論是否成立(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,∠C=90°,∠BAC=60°,AB的垂直平分線DEABD,交BCE,若CE=3cm,則BE的長(zhǎng)為(

A.6cm B.5cm C.4cm D.3cm

查看答案和解析>>

同步練習(xí)冊(cè)答案