【題目】平行四邊形ABCD中,BE⊥CD,BF⊥AD,垂足分別為E、F,若CE=2,DF=1,∠EBF=60°,求平行四邊形ABCD的面積.

【答案】解:∵BE⊥CD,BF⊥AD, ∴∠BEC=∠BFD=90°,
∵∠EBF=60°,
∵∠D+∠BED+∠BFD+∠EBF=360°,
∴∠D=120°,
∵平行四邊形ABCD,
∴DC∥AB,AD∥BC,∠A=∠C
∴∠A=∠C=180°﹣120°=60°,
∴∠ABF=∠EBC=30°,
∴AD=BC=2EC=4
在△BEC中由勾股定理得:BE=2 ,
在△ABF中AF=4﹣1=3,
∵∠ABF=30,
∴AB=6,
∴平行四邊形ABCD的面積是ABBE=6×2 =12
答:平行四邊形ABCD的面積是12
【解析】根據(jù)四邊形的內(nèi)角和等于360°,求出∠D=120°,根據(jù)平行四邊形的性質(zhì)得到∠A=∠C=60°,進一步求出∠ABF=∠EBC=30°,根據(jù)CE=2,DF=1,求出BC、AB的長,根據(jù)勾股定理求出BE的長,根據(jù)平行四邊形的面積公式即可求出答案.
【考點精析】利用三角形的內(nèi)角和外角和含30度角的直角三角形對題目進行判斷即可得到答案,需要熟知三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,河的兩岸l1l2相互平行,A、Bl1上的兩點,CDl2上的兩點,某人在點A處測得∠CAB=90°DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[(x﹣y)2]3(x﹣y)3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AB>AC,射線AM平分∠BAC.

(1)設AM交BC于點D,DE⊥AB于點E,DF⊥AC于點F,連接EF.有以下三種“判斷”:
判斷1:AD垂直平分EF.
判斷2:EF垂直平分AD.
判斷3:AD與EF互相垂直平分.
你同意哪個“判斷”?簡述理由;
(2)若射線AM上有一點N到△ABC的頂點B,C的距離相等,連接NB,NC.
①請指出△NBC的形狀,并說明理由;
②當AB=11,AC=7時,求四邊形ABNC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在5×5正方形ABCD中,每個小正方形的邊長都是1.

(1)如圖(2),連結(jié)各條邊上的四個點EF,G,H可得到一個新的正方形,那么這個新正方形的邊長是 ;

(2)將新正方形做如下變換,點ED點運動,同時點F以相同的速度向點A運動,其他兩點也做相同變化;當E,FG,H各點分別運動到ADAB,BC,CD的什么位置時,所得的新正方形面積是13,在圖(3)中畫出新正方形,此時AE= ;

(3)在圖(1)中作出一條以A為端點的線段AP,使得線段AP=,且點P必須落在橫縱線的交叉點上。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。

A.a3+a3a6B.a6÷a2a4C.a3a5a15D.a34a7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E,AE=2,CE=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,過A點作AG∥DB交CB的延長線于點G.

(1)求證:DE∥BF;
(2)若∠G=90°,求證:四邊形DEBF是菱形;
(3)請利用備用圖分析,在(2)的條件下,若BE=4,∠DEB=120°,點M為BF的中點,當點P在BD邊上運動時,求PF+PM的最小值,并求出此時線段BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有500名學生參加畢業(yè)會考,其數(shù)學成績在90~100分之間的共有180人,則這個分數(shù)段的頻率為( )

A. 0.06 B. 0.12 C. 0.18 D. 0.36

查看答案和解析>>

同步練習冊答案