如圖,AB是⊙的直徑,AB=10,C是⊙上一點,OD⊥BC于點D,BD=4,則AC的長為       
6.

試題分析:由AB是⊙O的直徑,可得∠C=90°,又由AB=10,BD=4,由勾股定理可求得OD的長,又由OD⊥BC,根據(jù)垂徑定理和三角形中位線定理即可求得AC的長:
∵AB是⊙O的直徑,∴∠C=90°.
∵AB=10,∴OB=5.
∵BD=4,∴OD=3.
∵OD⊥BC,∴BD=CD.∴.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙的半徑為,正方形頂點坐標(biāo)為,頂點在⊙上運動.
(1)當(dāng)點運動到與點、在同一條直線上時,試證明直線與⊙相切;
(2)當(dāng)直線與⊙相切時,求所在直線對應(yīng)的函數(shù)關(guān)系式;
(3)設(shè)點的橫坐標(biāo)為,正方形的面積為,求之間的函數(shù)關(guān)系式,并求出的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是圓0直徑,弦AC=2,∠ABC=30°,則圖中陰影部分的面積是_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,以點P(2,0)為圓心,為半徑作圓,點M(a,b) 是⊙P上的一點,設(shè),則的取值范圍是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知⊙O1、⊙O2的半徑不相等,⊙O1的半徑長為3,若⊙O2上的點A滿足AO1=3,則⊙O1與⊙O2的位置關(guān)系是(   )
A.相交或相切B.相切或相離C.相交或內(nèi)含 D.相切或內(nèi)含

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O的直徑AB與弦AC的夾角∠A=30°,過點C作⊙O的切線交AB的延長線于點P,PC=,則圖中陰影部分的面積為           (結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖⑴,BF、BD分別是⊙O的切線,切點分別為F、D,圖中有哪些相等的線段?
如圖⑵和圖⑶分別在圖⑴的基礎(chǔ)上增加了一條切線AC,圖中有哪些相等的線段?
如圖⑷,△ABC的內(nèi)切圓⊙O與BC、AC、AB分別相切于點D、E、F,若BD=5,CE=4,AF=3,求AB,BC,AC的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( 。
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個扇形的圓心角為60°,它所對的弧長為πcm,則這個扇形的半徑為                .

查看答案和解析>>

同步練習(xí)冊答案