【題目】已知:如圖,△ABC中,∠ABC45°,CDABD,BE平分∠ABC,且BEACE,與CD相交于點(diǎn)F,HBC邊的中點(diǎn),連結(jié)DHBE相交于點(diǎn)G

1)求證:BFAC;

2)求證:CEBF

【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.

【解析】

1)利用ASA判定RtDFBRtDAC,從而得出BF=AC

2)利用ASA判定RtBEARtBEC,得出CE=AE=AC,再由BF=AC,利用等量代換即可得結(jié)論.

1)∵CDAB,∠ABC=45°,

∴△BCD是等腰直角三角形,

BD=CD,

CD⊥AB,BE⊥AC,

∠BDC=∠CDA=90°,∠BEC=BEA=90°,

∴∠DBF=90°-BFD,∠DCA=90°-EFC,

又∵∠BFD=EFC,

∴∠DBF=DCA

RtDFBRtDAC中,

RtDFBRtDACASA),

BF=AC;

2)∵BE平分∠ABC,

∴∠ABE=CBE

RtBEARtBEC

,

RtBEARtBECASA),

CE=AE,

CE+AE=AC,

CE=AC,

又由(1)知BF=AC,

CE=BF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)n位自然數(shù)能被x0整除,依次輪換個(gè)位數(shù)字得到的新數(shù)能被x0+1整除,再依次輪換個(gè)位數(shù)字得到的新數(shù)能被x0+2整除,按此規(guī)律輪換后, 能被x0+3整除,…,能被x0+n﹣1整除,則稱(chēng)這個(gè)n位數(shù)是x0的一個(gè)“輪換數(shù)”.

例如:60能被5整除,06能被6整除,則稱(chēng)兩位數(shù)60是5的一個(gè)“輪換數(shù)”;

再如:324能被2整除,243能被3整除,432能被4整除,則稱(chēng)三位數(shù)324是2個(gè)一個(gè)“輪換數(shù)”.

(1)若一個(gè)兩位自然數(shù)的個(gè)位數(shù)字是十位數(shù)字的2倍,求證這個(gè)兩位自然數(shù)一定是“輪換數(shù)”.

(2)若三位自然數(shù)是3的一個(gè)“輪換數(shù)”,其中a=2,求這個(gè)三位自然數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=BC=2,ABC=120°,將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)角a(0°<a<90°)得到△A1BC;A1BAC于點(diǎn)E,A1C1分別交AC、BCD、F兩點(diǎn).

(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過(guò)程中,線段BEBF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.

(2)如圖2,當(dāng)a=30°時(shí),試判斷四邊形BC1DA的形狀,并證明.

(3)在(2)的條件下,求線段DE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),平行于x軸的直線與拋物線L:y=ax2相交于A,B兩點(diǎn)(點(diǎn)B在第一象限),點(diǎn)CAB的延長(zhǎng)線上.

(1)已知a=1,點(diǎn)B的縱坐標(biāo)為2.如圖1,向右平移拋物線L使該拋物線過(guò)點(diǎn)B,與AB的延長(zhǎng)線交于點(diǎn)C,AC的長(zhǎng)為__

(2)如圖2,若BC=AB,過(guò)O,B,C三點(diǎn)的拋物線L3,頂點(diǎn)為P,開(kāi)口向下,對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)為a3, =__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=8.把△BCD沿對(duì)角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)G;E、F分別是C′D和BD上的點(diǎn),線段EF交AD于點(diǎn)H,把△FDE沿EF折疊,使點(diǎn)D落在D′處,點(diǎn)D′恰好與點(diǎn)A重合.

(1)求證:△ABG≌△C′DG;

(2)求tan∠ABG的值;

(3)求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校一幢教學(xué)大樓的頂部豎有一塊傳承文明,啟智求真的宣傳牌CD.小明在山坡的坡腳A處測(cè)得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測(cè)得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i1:,AB=10,AE=15米,求這塊宣傳牌CD的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1.參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制,即每月用水量不超過(guò)14噸(含14噸)時(shí),每噸按政府補(bǔ)貼優(yōu)惠價(jià)收費(fèi);每月超過(guò)14噸時(shí),超過(guò)部分每噸按市場(chǎng)調(diào)節(jié)價(jià)收費(fèi),小英家1月份用水20噸,交水費(fèi)29元;2月份用水18噸,交水費(fèi)24元.

1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)調(diào)節(jié)價(jià)分別是多少?

2)小英家3月份用水24噸,她家應(yīng)交水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=45°P為∠MON內(nèi)一點(diǎn),AOM上一點(diǎn),BON上一點(diǎn),當(dāng)PAB的周長(zhǎng)取最小值時(shí),∠APB的度數(shù)為( )

A.80°B.90°C.110°D.120°

查看答案和解析>>

同步練習(xí)冊(cè)答案