【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).
(1)如圖1.過點(diǎn)C作⊙O的切線,與AB的延長線相交于點(diǎn)P,若∠CAB=27°,求∠P的大。
(2)如圖2,D為 上一點(diǎn),且OD經(jīng)過AC的中點(diǎn)E,連接DC并延長,與AB的延長線相交于點(diǎn)P,若∠CAB=10°,求∠P的大。
【答案】
(1)解:如圖,連接OC,
∵⊙O與PC相切于點(diǎn)C,
∴OC⊥PC,即∠OCP=90°,
∵∠CAB=27°,
∴∠COB=2∠CAB=54°,
在Rt△AOE中,∠P+∠COP=90°,
∴∠P=90°﹣∠COP=36°;
(2)解:∵E為AC的中點(diǎn),
∴OD⊥AC,即∠AEO=90°,
在Rt△AOE中,由∠EAO=10°,
得∠AOE=90°﹣∠EAO=80°,
∴∠ACD= ∠AOD=40°,
∵∠ACD是△ACP的一個(gè)外角,
∴∠P=∠ACD﹣∠A=40°﹣10°=30°
【解析】本題考查了切線的性質(zhì),解題的關(guān)鍵是能夠利用圓的切線垂直于經(jīng)過切點(diǎn)的半徑得到直角三角形,難度不大.(1)連接OC,首先根據(jù)切線的性質(zhì)得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形兩銳角互余即可求得答
案;(2)根據(jù)E為AC的中點(diǎn)得到OD⊥AC,從而求得∠AOE=90°﹣∠EAO=80°,然后利用圓周角定理求得∠ACD= ∠AOD=40°,最后利用三角形的外角的性質(zhì)求解即可.
【考點(diǎn)精析】本題主要考查了切線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(0,2)、B(2 ,2)、C(0,4),過點(diǎn)C向右做平行于x軸的射線,點(diǎn)P是射線上的動(dòng)點(diǎn),連接AP,以AP為邊在左側(cè)作等邊△APQ,連接PB、BA.
(1)當(dāng)AB∥PQ時(shí),點(diǎn)P的橫坐標(biāo)是;
(2)當(dāng)BP∥QA時(shí),點(diǎn)P的橫坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙M與x軸相切于原點(diǎn),平行于y軸的直線交圓于P,Q兩點(diǎn),P點(diǎn)在Q點(diǎn)的下方,若P點(diǎn)坐標(biāo)是(2,1),則圓心M的坐標(biāo)是( 。
A.(0,3)
B.(0,2)
C.(0,)
D.(0,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在A地往北60m的B處有一幢房,西80m的C處有一變電設(shè)施,在BC的中點(diǎn)D處有古建筑.因施工需要在A處進(jìn)行一次爆破,為使房、變電設(shè)施、古建筑都不遭到破壞,問爆破影響面的半徑應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,AD與⊙O相切于點(diǎn)B,D,C為⊙O上一點(diǎn),且∠BCD=140°,則∠A的度數(shù)是( 。
A.70°
B.105°
C.100°
D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=105°,∠DBC=75°.
(1)求證:BD=CD;
(2)若圓O的半徑為3,求 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對(duì)角線BD折疊,使C落在F處,BF交AD于E,則下列結(jié)論不一定成立的是( )
A.AD=BF
B.△ABE≌FDE
C.sin
D.△ABE∽△CBD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com