【題目】小花家在裝修客廳時,購進彩色地磚和原色地磚共120塊,一共花費了8700元.已知原色地磚的價錢是60元/塊,彩色地磚的價錢是110元/塊.
(1)兩種型號的地磚各采購了多少塊?
(2)如果廚房也要鋪這兩種型號的地磚共70塊,且采購費用不超過4400元,那么彩色地磚最多能采購多少塊?
【答案】(1)彩色地磚采購了30塊,原色地磚采購了90塊;(2)彩色地磚最多能采購4塊.
【解析】
(1)設(shè)彩色地磚采購x塊,原色地磚采購y塊,根據(jù)彩色地磚和原色地磚的總價為8700及地磚總數(shù)為120建立二元一次方程組求出其解即可;
(2)設(shè)彩色地磚采購了m塊,則原色地磚采購了(70﹣m)塊,根據(jù)采購地磚的費用不超過4400元建立不等式,求出其解即可.
解:(1)設(shè)彩色地磚采購了x塊,原色地磚采購了y塊,
根據(jù)題意得:
解得:
答:彩色地磚采購了30塊,原色地磚采購了90塊.
(2)設(shè)彩色地磚采購了m塊,則原色地磚采購了(70﹣m)塊,
根據(jù)題意得:110m+60(70﹣m)≤4400,
解得:m≤4.
答:彩色地磚最多能采購4塊.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC和BD交于點O,則下列不能判斷四邊形ABCD是平行四邊形的條件是( )
A. OA=OC,AD∥BC B. ∠ABC=∠ADC,AD∥BC
C. AB=DC,AD=BC D. ∠ABD=∠ADB,∠BAO=∠DCO
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為解決部分市民冬季集中取暖問題需鋪設(shè)一條長3000米的管道,為盡量減少施工對交通造成的影響,實施施工時“…”,設(shè)實際每天鋪設(shè)管道x米,則可得方程 ,根據(jù)此情景,題中用“…”表示的缺失的條件應補為( )
A.每天比原計劃多鋪設(shè)10米,結(jié)果延期15天才完成
B.每天比原計劃少鋪設(shè)10米,結(jié)果延期15天才完成
C.每天比原計劃多鋪設(shè)10米,結(jié)果提前15天才完成
D.每天比原計劃少鋪設(shè)10米,結(jié)果提前15天才完成
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點O,E為BC上一點,CE=5,F(xiàn)為DE的中點.若△CEF的周長為18,則OF的長為( )
A. 3 B. 4 C. 2.5 D. 3.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù) 的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,﹣2),
(1)求這兩個函數(shù)的關(guān)系式;
(2)觀察圖象,寫出使得y1>y2成立的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40天
(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時 天
(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務(wù)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com