【題目】小聰和小明分別從相距30公里的甲、乙兩地同時出發(fā)相向而行,小聰騎摩托車到達乙地后立即返回甲地,小明騎自行車從乙地直接到達甲地,函數(shù)圖象y1(km)和y2(km)分別表示小聰離甲地的距離和小明離乙地的距離與已用時間t(h)之間的關系,如圖所示.下列說法:①折線段OAB是表示小聰?shù)暮瘮?shù)圖象y1,線段OC是表示小明的函數(shù)圖象y2;②小聰去乙地和返回甲地的平均速度相同;③兩人在出發(fā)80分鐘后第一次相遇;④小明騎自行車的平均速度為15km/h,其中不正確的個數(shù)為( 。
A. 0個 B. 1個 C. 2個 D. 3個
科目:初中數(shù)學 來源: 題型:
【題目】正方形網格中(網格中的每個小正方形邊長是1),△ABC的頂點均在格點上,請在所給的直角坐標系中解答下列問題:
⑴ 作出△繞點A逆時針旋轉90°的△AB1C1,再作出△AB1C1關于原點O成中心對稱的△A1B2C2.
(2)請直接寫出以A1、B2、C2為頂點的平行四邊形的第四個頂點D的坐標 .(寫出一個即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“愛滿金陵”慈善一日捐活動中,學校團總支為了了解本校寫生的捐款情況,隨機抽取了名學生的捐款數(shù)進行了統(tǒng)計,并繪制成統(tǒng)計圖.
()這名同學捐款的眾數(shù)為__________元,中位數(shù)為__________.
()求這名同學捐款的平均數(shù).
()該校共有名學生參與捐款,請估計該校學生的捐款總數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù)的圖象過點,且頂點坐標為.
求此二次函數(shù)的表達式;
畫出此函數(shù)圖象,并根據函數(shù)圖象寫出:當時,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C,D在同一條直線上,點E,F分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時,四邊形BFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在ABCD中,點E、F分別在AD、BC上,EF與BD相交于點O,AE=CF.
(1)求證:OE=OF;
(2)連接BE、DF,若BD平分∠EBF,試判斷四邊形EBFD的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在平面直角坐標系中,四邊形OBCD是正方形,且D(0,2),點E是線段OB延長線上一點,M是線段OB上一動點(不包括點O、B),作MN⊥DM,垂足為M,且MN=DM.設OM=a,請你利用基本活動經驗直接寫出點N的坐標______(用含a的代數(shù)式表示);
(2)如果(1)的條件去掉“且MN=DM”,加上“交∠CBE的平分線與點N”,如圖,求證:MD=MN.如何突破這種定勢,獲得問題的解決,請你寫出你的證明過程.
(3)在(2)的條件下,如圖,請你繼續(xù)探索:連接DN交BC于點F,連接FM,下列兩個結論:①FM的長度不變;②MN平分∠FMB,請你指出正確的結論,并給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的三條角平分線相交于點I,過點I作DI⊥IC,交AC于點D.
(1)如圖①,求證:∠AIB=∠ADI;
(2)如圖②,延長BI,交外角∠ACE的平分線于點F.
①判斷DI與CF的位置關系,并說明理由;
②若∠BAC=70°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,x=是該拋物線的對稱軸,根據圖中所提供的信息,請寫出有關a,b,c的四條結論,并簡要說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com