【題目】如圖,個全等的等腰三角形的底邊在同一條直線上,底角頂點依次重合.連接第一個三角形的底角頂點和第個三角形的頂角頂點交于點,則_________.
【答案】n
【解析】
連接A1An,根據(jù)全等三角形的性質得到∠AB1B2=∠A2B2B3,根據(jù)平行線的判定得到A1B1∥A2B2,又根據(jù)A1B1=A2B2,得到四邊形A1B1B2A2是平行四邊形,從而得到A1A2∥B1B2,從而得出A1An∥B1B2,然后根據(jù)相似三角形的性質即可得到結論.
解:連接A1An,根據(jù)全等三角形的性質得到∠AB1B2=∠A2B2B3,
∴A1B1∥A2B2,
又A1B1=A2B2,
∴四邊形A1B1B2A2是平行四邊形.
∴A1A2∥B1B2,A1A2=B1B2=A2A3,
同理可得,A2A3=A3A4 =A4A5=…= An-1An.
根據(jù)全等易知A1,A2,A3,…,An共線,
∴A1An∥B1B2,
∴PnB1B2∽△PnAnA1,
,
又A1Pn+PnB2=A1B2,
∴.
故答案為:n.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與y軸的交點為A,與x軸的正半軸分別交于點B(b,0),C(c,0).
(1)當b=1時,求拋物線相應的函數(shù)表達式;
(2)當b=1時,如圖,E(t,0)是線段BC上的一動點,過點E作平行于y軸的直線l與拋物線的交點為P.求△APC面積的最大值;
(3)當c =b+ n.時,且n為正整數(shù).線段BC(包括端點)上有且只有五個點的橫坐標是整數(shù),求b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標不可能是
A.(6,0) B.(6,3) C.(6,5) D.(4,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作⊙O的內接正六邊形ABCDEF,甲、乙兩人的作法分別是:
甲:第一步:在⊙O上任取一點A,從點A開始,以⊙O的半徑為半徑,在⊙O上依次截取點B,C,D,E,F. 第二步:依次連接這六個點.
乙:第一步:任作一直徑AD. 第二步:分別作OA,OD的中垂線與⊙O相交,交點從點A開始,依次為點B,C,E,F. 第三步:依次連接這六個點.
對于甲、乙兩人的作法,可判斷( )
A.甲正確,乙錯誤B.甲、乙均錯誤
C.甲錯誤,乙正確D.甲、乙均正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經營家居收納盒,已知成批購進時的單價是20元.調查發(fā)現(xiàn):銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每個收納盒售價不能高于40元.設每個收納盒的銷售單價上漲了元時(為正整數(shù)),月銷售利潤為元.
(1)求與的函數(shù)關系式.
(2)每個收納盒的售價定為多少元時,月銷售利潤恰為2520元?
(3)每件玩具的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2-2ax+c與x軸交于A,B兩點,與y軸正半軸交于點C,且A(-1,0).
(1)一元二次方程ax2-2ax+c=0的解是 ;
(2)一元二次不等式ax2-2ax+c>0的解集是 ;
(3)若拋物線的頂點在直線y=2x上,求此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,函數(shù)的圖象與直線交于點A(3,m).
(1)求k、m的值;
(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù) 的圖象于點N.
①當n=1時,判斷線段PM與PN的數(shù)量關系,并說明理由;
②若PN≥PM,結合函數(shù)的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com