【題目】如圖,長方形 的頂點 的坐標為 ,動點 從原點 出發(fā),以每秒 個單位的速度沿折線 運動,到點 時停止,同時,動點 從點 出發(fā),以每秒 個單位的速度在線段 上運動,當一個點停止時,另一個點也隨之停止.在運動過程中,當線段 恰好經過點 時,運動時間 的值是 .
【答案】2或5
【解析】設直線 的方程為 .
∵矩形 的頂點 的坐標為 ,
∴ , .
①當點 在線段 上,即 時,
如圖,
、 .
∵直線 經過點 ,
∴ .解得 .
②當點 在線段 上,即 時,
如圖, 、 .
∵直線 經過點 ,
∴ ,方程組無解.
③當直線 軸時,即 時,該直線 也經過點 ,此時 ,
綜上所述, 的值是 或 .
【考點精析】掌握一次函數(shù)的圖象和性質是解答本題的根本,需要知道一次函數(shù)是直線,圖像經過仨象限;正比例函數(shù)更簡單,經過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠.
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一個內角為90°,且對角線相等的四邊形稱為準矩形.
(1)①如圖1,準矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD=;
②如圖2,直角坐標系中,A(0,3),B(5,0),若整點P使得四邊形AOBP是準矩形,則點P的坐標是;(整點指橫坐標、縱坐標都為整數(shù)的點)
(2)如圖2,正方形ABCD中,點E、F分別是邊AD、AB上的點,且CF⊥BE,求證:四邊形BCEF是準矩形;
(3)已知,準矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當△ADC為等腰三角形時,請直接寫出這個準矩形的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】使(x2+px+8)(x2﹣3x+q)乘積中不含x2與x3項的p、q的值是( )
A.p=0,q=0
B.p=3,q=1
C.p=﹣3,q=﹣9
D.p=﹣3,q=1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1經過A(-1,0),B(1,1)兩點.
(1)求該拋物線的解析式;
(2)閱讀理解:
在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1·k2=-1.
解決問題:
①若直線y=3x-1與直線y=mx+2互相垂直,求m的值;
②是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 的一邊 為平面鏡, ,在 上有一點 ,從 點射出一束光線經 上一點 反射,反射光線 恰好與 平行,則 的度數(shù)是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國魏晉時期的數(shù)學家劉徽創(chuàng)立了“割圓術”,認為圓內接正多邊形邊數(shù)無限增加時,周長就越接近圓周長,由此求得了圓周率的近似值.設半徑為的圓內接正邊形的周長為,圓的直徑為.如右圖所示,當時,,那么當時, .(結果精確到,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下列各組數(shù)據(jù)為三角形三邊,能構成直角三角形的是( )
A. 4m,8m,7m B. 2m,2m,2m C. 2m,2m,4m D. 13m,12m,5m
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com