【題目】BC為鄰邊作菱形ABCD,頂點D恰在該圓直徑的三等分點上,則該菱形的邊長為(
A. 或2
B. 或2
C. 或2
D. 或2

【答案】D
【解析】解:過B作直徑,連接AC交AO于E,
∵點B為 的中點,
∴BD⊥AC,
①如圖①,

∵點D恰在該圓直徑的三等分點上,
∴BD= ×2×3=2,
∴OD=OB﹣BD=1,
∵四邊形ABCD是菱形,
∴DE= BD=1,
∴OE=2,
連接OD,
∵CE= = ,
∴邊CD= = ;
如圖②,

BD= ×2×3=4,
同理可得,OD=1,OE=1,DE=2,
連接OD,
∵CE= = =2 ,
∴邊CD= = =2 ,
故選D.
【考點精析】利用菱形的性質(zhì)和圓心角、弧、弦的關(guān)系對題目進(jìn)行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中, = ,以點B為圓心,BC長為半徑畫弧,交邊AD于點E.若AEED= ,則矩形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明家在學(xué)校O的北偏東60°方向,距離學(xué)校80米的A處,小華家在學(xué)校O的南偏東45°方向的B處,小華家在小明家的正南方向,求小華家到學(xué)校的距離.(結(jié)果精確到1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為養(yǎng)成學(xué)生課外閱讀的習(xí)慣,各學(xué)校普遍開展了“我的夢 中國夢”課外閱讀活動,某校為了解七年級1200名學(xué)生課外日閱讀所用時間情況,從中隨機(jī)抽查了部分同學(xué),進(jìn)行了相關(guān)統(tǒng)計,整理并繪制出如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請根據(jù)圖表信息解答下列問題:

組別

時間段(小時)

頻數(shù)

頻率

1

0≤x<0.5

10

0.05

2

0.5≤x<1.0

20

0.10

3

1.0≤x<1.5

80

b

4

1.5≤x<2.0

a

0.35

5

2.0≤x<2.5

12

0.06

6

2.5≤x<3.0

8

0.04


(1)表中a= , b=;
(2)請補(bǔ)全頻數(shù)分布直方圖中空缺的部分;
(3)樣本中,學(xué)生日閱讀所用時間的中位數(shù)落在第組;
(4)請估計該校七年級學(xué)生日閱讀量不足1小時的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,AD=8,P,E分別是線段AC、BC上的點,且四邊形PEFD為矩形.

(Ⅰ)若△PCD是等腰三角形時,求AP的長;
(Ⅱ)若AP= ,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組要測量一棟五層居民樓CD的高度.該樓底層為車庫,高2.5米;上面五層居住,每層高度相等.測角儀支架離地1.5米,在A處測得五樓頂部點D的仰角為60°,在B處測得四樓頂點E的仰角為30°,AB=14米.求居民樓的高度(精確到0.1米,參考數(shù)據(jù): ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形ABCD折疊,使頂點A與CD邊上的一點H重合(H不與端點C,D重合),折痕交AD于點E,交BC于點F,邊AB折疊后與邊BC交于點G.設(shè)正方形ABCD的周長為m,△CHG的周長為n,則 的值為(
A.
B.
C.
D.隨H點位置的變化而變化

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為2 的正方形ABCD中,P是對角線AC上的一個動點(點P與A、C不重合),連接BP,將BP繞點B順時針旋轉(zhuǎn)90°到BQ,連接QP,QP與BC交于點E,QP延長線與AD(或AD延長線)交于點F.

(1)連接CQ,證明:CQ=AP;
(2)設(shè)AP=x,CE=y,試寫出y關(guān)于x的函數(shù)關(guān)系式,并求當(dāng)x為何值時,CE= BC;
(3)猜想PF與EQ的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>0,b>0)的離心率為 ,右焦點為F,上頂點為A,且△AOF的面積為 (O為坐標(biāo)原點).

(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上的一點,過P的直線與以橢圓的短軸為直徑的圓切于第一象限內(nèi)的一點M,證明:|PF|+|PM|為定值.

查看答案和解析>>

同步練習(xí)冊答案