【題目】在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c經(jīng)過點A、B、C,已知A(-1,0),C(0,3).
(1)求拋物線的表達式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當(dāng)△BCD的面積最大時,求點P的坐標(biāo);
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,N是線段EF上一動點,M(m,0)是x軸上一動點,若∠MNC=90°,直接寫出實數(shù)m的取值范圍.
【答案】(1)y=-x2+2x+3;(2)P(,);(3)
【解析】
(1)由y=-x2+bx+c經(jīng)過點A、B、C,A(-1,0),C(0,3),利用待定系數(shù)法即可求得此拋物線的解析式;
(2)首先令-x2+2x+3=0,求得點B的坐標(biāo),然后設(shè)直線BC的解析式為y=kx+b′,由待定系數(shù)法即可求得直線BC的解析式,再設(shè)P(a,3-a),即可得D(a,-a2+2a+3),即可求得PD的長,由S△BDC=S△PDC+S△PDB,即可得S△BDC=,利用二次函數(shù)的性質(zhì),即可求得當(dāng)△BDC的面積最大時,求點P的坐標(biāo);
(3)首先過C作CH⊥EF于H點,則CH=EH=1,然后分別從點M在EF左側(cè)與M在EF右側(cè)時去分析求解即可求得答案.
解:(1)由題,解得:,
所以拋物線表達式為
(2)令,
∴.即
設(shè)直線的表達式為,
∴
∴
故直線的表達式為,
設(shè),則
當(dāng)時,的面積最大,此時
(3)的取值范圍是:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b2﹣4ax>0;②2a+b>0;③abc<0;④4a﹣2b+c<0;⑤a+b+c>0.其中正確的個數(shù)是( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明統(tǒng)計了某校八年級(3)班五位同學(xué)每周課外閱讀的平均時間,其中四位同學(xué)每周課外閱讀時間分別是小時、小時、小時、小時,第五位同學(xué)每周的課外閱讀時間既是這五位同學(xué)每周課外閱讀時間的中位數(shù),又是眾數(shù),則第五位同學(xué)每周課外閱讀時間是( )
A.小時B.小時C.或小時D.或或小時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是拋物線上兩點,則y1<y2, 其中結(jié)論正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形、正方形和正方形的位置如圖所示,點在線段上,正方形的邊長為4,則的面積為( )
A. 10 B. 12 C. 14 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,拋物線的頂點D的坐標(biāo)為(1,-4),且與y軸交于點
C(0,3)
求該函數(shù)的關(guān)系式;
求改拋物線與x軸的交點A,B的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com