【題目】如圖,已知邊長為4的正方形ABCD,P是BC邊上一動點(與B,C不重合),連結(jié)AP,作PE⊥AP交∠BCD的外角平分線于E,設(shè)BP=x,△PCE面積為y,則y與x的函數(shù)關(guān)系式是_____.
【答案】.
【解析】
過E作EH⊥BC于H,證明△BAP∽△HPE,求出EH=x,所以y=CPEH=(4-x)x=-x2+2x,
過E作EH⊥BC于H,
∵四邊形ABCD是正方形,
∴∠DCH=90°,
∵CE平分∠DCH,
∴∠ECH=∠DCH=45°,
∵∠EHC=90°,
∴∠ECH=∠CEH=45°,
∴EH=CH,
∵四邊形ABCD是正方形,AP⊥EP,
∴∠B=∠H=∠APE=90°,
∴∠BAP+∠APB=90°,∠APB+∠EPH=90°,
∴∠BAP=∠EPH,
∵∠B=∠EHP=90°,
∴△BAP∽△HPE,
∴,
即,
∴EH=x,
∴y=CPEH=(4﹣x)x=﹣x2+2x,
故答案為:y=﹣x2+2x.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了開展“陽光體育運動”,計劃購買籃球、足球共60個,已知每個籃球的價格為70元,每個足球的價格為80元.
(1)若購買這兩類球的總金額為4600元,求籃球、足球各買了多少個?
(2)若購買籃球的總金額不超過購買足球的總金額,求最多可購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A型、B型、C型三張矩形卡片的邊長如圖所示,將三張矩形卡片分別放入三個信封中,三個信封的外表完全相同;
(1)從這三個信封中隨機抽取1個信封,則抽中A型矩形的概率為______;
(2)先從這三個信封中隨機抽取1個信封(不放回),再從余下的兩個信封中隨機抽取1個信封,求事件“兩次抽中的矩形卡片能拼成(無重疊無縫隙)一個新矩形”發(fā)生的概率.(列表法或樹狀圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,連結(jié)BD、AC交于點O,過點O作于點H,以點O為圓心,OH為半徑的半圓交AC于點M.
①求證:DC是⊙O的切線.
②若且,求圖中陰影部分的面積.
③在②的條件下,P是線段BD上的一動點,當PD為何值時,的值最小,并求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A種,B種樹木每棵各多少元?
(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(3,0),B(﹣1,0),C(0,﹣3).
(1)求該拋物線的解析式;
(2)若以點A為圓心的圓與直線BC相切于點M,求切點M的坐標;
(3)若點Q在x軸上,點P在拋物線上,是否存在以點B,C,Q,P為頂點的四邊形是平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點、點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為宣傳6月6日世界海洋日,某校九年級舉行了主題為“珍惜海洋資源,保護海洋生物多樣性”的知識競賽活動.為了解全年級500名學(xué)生此次競賽成績(百分制)的情況,隨機抽取了部分參賽學(xué)生的成績,整理并繪制出如下不完整的統(tǒng)計表(表1)和統(tǒng)計圖(如圖).請根據(jù)圖表信息解答以下問題:
(1)本次調(diào)查一共隨機抽取了 個參賽學(xué)生的成績;
(2)表1中 ;
(3)所抽取的參賽學(xué)生的成績的中位數(shù)落在的“組別”是 ;
(4)請你估計,該校九年級競賽成績達到80分以上(含80分)的學(xué)生約有 人.
表1 知識競賽成績分組統(tǒng)計表
組別 | 分數(shù)/分 | 頻數(shù) |
A | a | |
B | 10 | |
C | 14 | |
D | 18 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)分別交y軸、x軸于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點.
(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com