【題目】如圖,C為線段AD上一點(diǎn),點(diǎn)B為CD的中點(diǎn),且AD=8 cm,BD=2 cm.
(1)圖中共有多少條線段?
(2)求AC的長(zhǎng).
(3)若點(diǎn)E在直線AD上,且EA=3 cm,求BE的長(zhǎng).
【答案】(1)6;(2)4cm;(3)9cm或3cm.
【解析】試題分析:(1)根據(jù)線段的定義找出圖中所有線段,圖中線段有:AC,AB,AD,CB,CD,BD共6條,
(2)根據(jù)線段的和差關(guān)系和線段中點(diǎn)性質(zhì)進(jìn)行計(jì)算可得: AC= AD-CD= AD-2BD=8-4=4,
(3)因?yàn)辄c(diǎn)E在直線AD上,且EA=3cm,題目中沒有明確點(diǎn)E 的具體位置,所以要分兩種情況討論, ①點(diǎn)E在A點(diǎn)的左側(cè)時(shí), ②點(diǎn)E在A點(diǎn)的右側(cè)時(shí),利用線段和差關(guān)系分別進(jìn)行計(jì)算.
試題解析:(1)圖中共有6條線段,
(2)∵點(diǎn)B為CD的中點(diǎn),
∴CD=2BD,
∵BD=2 cm,
∴CD=4 cm,
∵AC=AD-CD且AD=8 cm,CD=4 cm,
∴AC=4 cm,
(3)當(dāng)E在點(diǎn)A的左邊時(shí),則BE=BA+EA且BA=6 cm,EA=3 cm,
∴BE=9 cm.
當(dāng)E在點(diǎn)A的右邊時(shí),則BE=AB-EA且AB=6 cm,EA=3 cm,
∴BE=3 cm.
∴BE=9 cm或BE=3 cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,P是第一象限角平分線上的一點(diǎn),且P點(diǎn)的橫坐標(biāo)為3.把一塊三角板的直角頂點(diǎn)固定在點(diǎn)P處,將此三角板繞點(diǎn)P旋轉(zhuǎn),在旋轉(zhuǎn)的過程中設(shè)一直角邊與x軸交于點(diǎn)E,另一直角邊與y軸交于點(diǎn)F,若△POE為等腰三角形,則點(diǎn)F的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)舉行英語演講比賽,購買A,B兩種筆記本作為獎(jiǎng)品,這兩種筆記本的單價(jià)分別是12元和8元.根據(jù)比賽設(shè)獎(jiǎng)情況,需購買筆記本共30本,并且所購買A筆記本的數(shù)量要不多于B筆記本數(shù)量的,但又不少于B筆記本數(shù)量,設(shè)買A筆記本n本,買兩種筆記本的總費(fèi)為w元.
(1)寫出w(元)關(guān)于n(本)的函數(shù)關(guān)系式,并求出自變量n的取值范圍;
(2)購買這兩種筆記本各多少時(shí),費(fèi)用最少?最少的費(fèi)用是多少元?
(3)商店為了促銷,決定僅對(duì)A種類型的筆記本每本讓利a元銷售,B種類型筆記本售價(jià)不變.問購買這兩種筆記本各多少本時(shí)花費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)從下列、兩題中任選一題作答,我選擇: 題.
:如圖,已知,射線在外部,且.若射線平分.求的度數(shù).
:如圖,已知,射線在的內(nèi)部,射線在的內(nèi)部,且,若射線平分,射線平分.求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線 與x軸交于點(diǎn)A(-2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度向C點(diǎn)運(yùn)動(dòng).其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).當(dāng)△PBQ存在時(shí),求運(yùn)動(dòng)多少秒使△PBQ的面積最大,最大面積是多少?
(3)當(dāng)△PBQ的面積最大時(shí),在BC下方的拋物線上存在點(diǎn)K,使 ,求K點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問題:
請(qǐng)利用直尺和圓規(guī)確定圓中弧AB所在圓的圓心
小亮的作法如下:
如圖:
① 在弧AB上任意取一點(diǎn)C,分別連接AC,BC
②分別作AC,BC的垂直平分線,兩條垂線平分線交于O點(diǎn),所以點(diǎn)O就是所求弧AB的圓心
老師說:“小亮的作法正確.”
請(qǐng)你回答:小亮的作圖依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是AB上一點(diǎn),連接CD,且∠ACD=∠ABC.
(1)求證:△ACD∽△ABC;
(2)若AD=6,AB=10,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災(zāi),“旱災(zāi)無情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門安排甲、乙兩種貨車時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來;
(3)在(2)的條件下,如果甲種貨車每輛需付運(yùn)費(fèi)400元,乙種貨車每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC的斜邊上取異于B,C的兩點(diǎn)E,F,使∠EAF=45°,求證:以EF,BE,CF為邊的三角形是直角三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com