在半徑為12cm的圓中,垂直平分半徑的弦長為(  )
A  cm   B 27 cm   C  cm  D  cm
C
分析:設圓為⊙O,弦為AB,半徑OC被AB垂直平分于點D,連接OA,由垂徑定理可得:AD=DB,再解Rt△ODA即可求得垂直平分半徑的弦長.
解答:解:設圓為⊙O,弦為AB,半徑OC被AB垂直平分于點D,連接OA,如下圖所示,則:

由題意可得:OA=OC=12cm,CO⊥AB,OD=DC=6cm
∵CO⊥AB
∴由垂徑定理可得:AD=DB
在Rt△ODA中,由勾股定理可得:
AD2=AO2-OD2
AD==6cm
∴AB=12cm
∴垂直平分半徑的弦長為12cm
故選C.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知點A、B、C在⊙O上,∠COA=100°,則∠CBA的度數(shù)是(    ).
A.50°    B.80°     C.100°     D.200°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

點P在⊙O內(nèi),OP = 2cm,若⊙O的半徑是3cm,則過點P的最短弦的長度為(   。
A.1cmB.2cmC.cmD.cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙M與x 軸相交于點A(2,0),B(8,0),與y軸相切于點C,則圓心M的坐標是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,以的直角邊為直徑的半圓,與斜邊交于,邊上的中點. 連結(jié),. 試問與半圓相切嗎?若相切,請給出證明;若不相切,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知⊙O1和⊙O2的半徑分別為1cm和4cm,且它們內(nèi)切,則圓心距O1O2等于______________cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O的兩條弦AB、CD互相垂直,垂足為點E,且⊙O的半徑為2,AB與CD兩弦長的平方和等于28,則OE等于(   ).

A. 1              B. 2          C. 1.5    D. 4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.

小題1:(1)若,求的度數(shù);
小題2:(2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.

小題1:(1)若,求的度數(shù);
小題2:(2)若,,求的長.

查看答案和解析>>

同步練習冊答案