【題目】已知△ABC中,∠ACB=90°,CD、CE分別是中線和角平分線,當(dāng)∠A= °時(shí),△CDE是等腰三角形.
【答案】15或75.
【解析】
試題分析:有兩種情況:①中線CD在角平分線CE的左邊,由直角三角形斜邊中線定理可以知道△BCD是等腰三角形,△CDE要是等腰三角形只有一種情況,即CE=DE,∠DCE=∠CDE,由外角定理可以知道∠CDE=∠B+∠BCD=2∠BCD,又因?yàn)?/span>∠CDE=∠DCE,且∠DCE+∠BCD=45°,所以3∠BCD=3∠B=45°,∠B=15°,∠A=90°-∠B=75°;
②中線CD在角平分線CE的右邊,由直角三角形斜邊中線定理可以知道△ACD是等腰三角形,△CDE要是等腰三角形只有一種情況,即CE=DE,∠DCE=∠CDE,由外角定理可以知道∠CDE=∠A+∠ACD=2∠ACD,又因?yàn)?/span>∠CDE=∠DCE,且∠DCE+∠ACD=45°,所以3∠ACD=3∠A=45°,∠A=15°;故答案為:15或75.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)五個(gè)相異正整數(shù)的平均數(shù)是15,中位數(shù)是18,則這五個(gè)相異正整數(shù)中的最大數(shù)的最大值為( 。
A. 24 B. 32 C. 35 D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算中,結(jié)果正確的是( )
A.2x2+3x3=5x5
B.2x33x2=6x6
C.2x3÷x2=2x
D.(2x2)3=2x6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1:.
(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆橋?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種藥品原價(jià)每盒25元,經(jīng)過兩次降價(jià)后每盒16元,兩次降價(jià)的百分率相同,設(shè)每次降價(jià)的百分率為x,則符合題意的方程為( 。
A. 16(1+2x)=25 B. 25(1﹣2x)=16 C. 16(1+x)2=25 D. 25(1﹣x)2=16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com