三個牧童A、B、C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊相等的矩形,大家分頭守在這三個矩形的中心(對角線交點),看守自己的一塊牧場.

過了一段時間,牧童B和牧童C又分別提出了新的劃分方案.

牧童B的劃分方案如圖2:三塊矩形的面積相等,牧童的位置在三個小矩形的中心.

牧童C的劃分方案如圖3:把正方形的牧場分成三塊矩形,牧童的位置在三個小矩形的中心,并保證在有情況時三個人所需走的最大距離相等.

請回答:

(1)牧童B的劃分方案中,牧童      (填A、BC)在有情況時所需走的最大距離較遠;

(2)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)

(1) C  ;

  (2)牧童C的劃分方案不符合他們商量的劃分原則.     

理由如下

:如圖,在正方形DEFG中,四邊形HENM、MNFPDHPG都是矩形,且HN=NP=HG.可知EN=NFS矩形HENM S矩形MNFP.   

取正方形邊長為2,設HD=x,則HE=2-x.

在Rt△HEN和Rt△DHG中,

HN=HG得:EH2+EN2=DH2+DG2 ,

即:

解得,.∴. 

        ∴S矩形HENM = S矩形MNFP =,S矩形DHPG =.∴S矩形HENMS矩形DHPG

∴牧童C的劃分方案不符合他們商量的劃分原則.  

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

三個牧童A、B、C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊相等的矩形,大家分頭守在這三個矩形的中心(對角線交點),看守自己的一塊牧場.過了一段時間,牧童B和牧童C又分別提出了新的劃分方案.牧童B的劃分方案如圖2:三塊矩形的面積相等,牧童的位置在三個小矩形的中心.牧童C的劃分方案如圖3:把正方形的牧場分成三塊矩形,牧童的位置在三個小矩形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:
(1)牧童B的劃分方案中,牧童
 
(填A、B或C)在有情況時所需走的最大距離較遠;
(2)牧童C的劃分方案是否符合他們商量的劃分原則,為什么?(提示:在計算時可取正方形邊長為2)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

三個牧童A,B,C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊全等的長方形,大家分頭守在這三個長方形的中心(對角線交點),看守自己的一塊牧場.
過了一段時間,牧童B和牧童C又分別提出里新的劃分方案.
牧童B的劃分方案如圖2:三塊長方形的面積相等,牧童的位置在三個小長方形的中心.
牧童C的劃分方案如圖3:把正方形的牧場分成三塊長方形,牧童的位置在三個小長方形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:

(I)長方形的兩條對角線是相等且互相平分的嗎?
(II)牧童B的劃分方案中,哪個牧童在有情況時所需走的最大距離較遠?
(III)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

三個牧童A,B,C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊全等的長方形,大家分頭守在這三個長方形的中心(對角線交點),看守自己的一塊牧場.
過了一段時間,牧童B和牧童C又分別提出里新的劃分方案.
牧童B的劃分方案如圖2:三塊長方形的面積相等,牧童的位置在三個小長方形的中心.
牧童C的劃分方案如圖3:把正方形的牧場分成三塊長方形,牧童的位置在三個小長方形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:

(I)長方形的兩條對角線是相等且互相平分的嗎?
(II)牧童B的劃分方案中,哪個牧童在有情況時所需走的最大距離較遠?
(III)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《三角形》(13)(解析版) 題型:解答題

(2009•孝感)三個牧童A、B、C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點,并保證在有情況時他們所需走的最大距離(看守點到本區(qū)域內(nèi)最遠處的距離)相等.按照這一原則,他們先設計了一種如圖1的劃分方案:把正方形牧場分成三塊相等的矩形,大家分頭守在這三個矩形的中心(對角線交點),看守自己的一塊牧場.過了一段時間,牧童B和牧童C又分別提出了新的劃分方案.牧童B的劃分方案如圖2:三塊矩形的面積相等,牧童的位置在三個小矩形的中心.牧童C的劃分方案如圖3:把正方形的牧場分成三塊矩形,牧童的位置在三個小矩形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:
(1)牧童B的劃分方案中,牧童______(填A、B或C)在有情況時所需走的最大距離較遠;
(2)牧童C的劃分方案是否符合他們商量的劃分原則,為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

同步練習冊答案