如圖(1),以梯形OABC的頂點O為原點,底邊OA所在的直線為軸建立直角坐標(biāo)系.梯形其它三個頂點坐標(biāo)分別為:A(14,0),B(11,4),C(3,4),點E以每秒2個單位的速度從O點出發(fā)沿射線OA向A點運動,同時點F以每秒3個單位的速度,從O點出發(fā)沿折線OCB向B運動,設(shè)運動時間為t.
(1)當(dāng)t=4秒時,判斷四邊形COEB是什么樣的四邊形?
(2)當(dāng)t為何值時,四邊形COEF是直角梯形?
(3)在運動過程中,四邊形COEF能否成為一個菱形?若能,請求出t的值;若不能,請簡要說明理由,并改變E、F兩點中任一個點的運動速度,使E、F運動到某時刻時,四邊形COEF是菱形,并寫出改變后的速度及t的值
(1)作CG⊥OA于G,BH⊥OA于H,且B(11,4),C(3,4),
∴∠CGO=∠BHA=90°,OG=3,CG=4,AH=3,BH=4,BC=8,
∴△CGO≌△BHA,
∴OC=AB,在Rt△OGC中由勾股定理,得
OC2=OG2+CG2,
∴OC2=32+42,
∴OC=5,
∴AB=5,
∵點E以每秒2個單位的速度從O點出發(fā)沿射線OA向A點運動,
∴當(dāng)運動時間為4時,OE=8,
∴OE=BC,
∵BCOA,
∴四邊形COEB是平行四邊形.

(2)如圖2,設(shè)t秒時四邊形COEF是直角梯形,
∴OC+CF=3t,OE=2t,CF=GE,
∴3t-OC=2t-OG,
∴3t-5=2t-3,解得:
t=2.

(3)假設(shè)運動t秒后,四邊形COEF是菱形,
∴CF=OE=CO=5,
∵OC+CF=3t=10,0E=2t=5,
∴t=
10
3
而t=
5
2

10
3
5
2

∴不存在符合條件的t.
當(dāng)F的速度每秒4個單位的速度,從O點出發(fā)沿折線OCB向B運動,而E點的速度不變,F(xiàn)運動到某時刻時,四邊形COEF是菱形.
∴由題意,得4t-5=5,
∴t=
5
2
,
∴OE=2×
5
2
=5,
∴CF=CO=EO=5,
∴當(dāng)t=
5
2
時,四邊形COEF是菱形.
改變后F的速度為:10÷
5
2
=4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

四邊形ABCD為直角梯形,ADBC,AD=36cm,BC=39cm,點P、Q分別在AD、BC上,且CQ=3AP.當(dāng)AP為何值時
(1)四邊形PQCD為平行四邊形;
(2)四邊形ABQP的面積等于四邊形PQCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在直角梯形ABCD中,∠DAB=∠ABC=90°,ADBC,AD=4,BC=9,E是腰AB上的一點,AE=3,BE=12,取CD的中點M,連接MA,MB,則△AMB與△DEC面積的比值為( 。
A.1B.
13
10
C.
169
150
D.
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,∠A=90°,BC=DC,sinC=
3
5
,BC=10,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.動點P從點B出發(fā)沿BC向點C運動,動點Q同時以相同速度從點C出發(fā)沿CD向點D運動,其中一個動點到達端點時,另一個動點也隨之停止運動.
(1)求AB的長;
(2)設(shè)BP=x,問當(dāng)x為何值時△PCQ的面積最大,并求出最大值;
(3)探究:在AB邊上是否存在點M,使得四邊形PCQM為菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在菱形ABCD中,∠DAB=60°,過點C作CE⊥AC且與AB的延長線交于點E.
求證:四邊形AECD是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

梯形同一底上的兩個角分別為70°和55°,且梯形的上底為7cm,下底為12cm,則與70°角相鄰的腰長為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等腰梯形ABCD中,ADBC,∠A=130°,則∠C=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,這是一張等腰梯形紙片,它的上底長為2,下底長為4,腰長為2,這樣的紙片共有5張.打算用其中的幾張來拼成較大的等腰梯形,那么你能拼出哪幾種不同的等腰梯形?分別畫出它們的示意圖,并寫出它們的周長.

查看答案和解析>>

同步練習(xí)冊答案