【題目】已知y關(guān)于x二次函數(shù)y=x2﹣(2k+1)x+(k2+5k+9)與x軸有交點(diǎn).
(1)求k的取值范圍;
(2)若x1,x2是關(guān)于x的方程x2﹣(2k+1)x+(k2+5k+9)=0的兩個實(shí)數(shù)根,且x12+x22=39,求k的值.
【答案】(1)k≤﹣;(2)k=﹣4.
【解析】
(1)利用判別式的意義得到[﹣(2k+1)]2﹣4×1×(k2+5k+9)≥0,然后解不等式即可;
(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2k+1,x1x2=k2+5k+9,再利用x12+x22=39得到(2k+1)2﹣2(k2+5k+9)=39,然后解方程后利用(1)的范圍確定k的值.
解:(1)∵y關(guān)于x二次函數(shù)y=x2﹣(2k+1)x+(k2+5k+9)與x軸有交點(diǎn),
∴△≥0,即[﹣(2k+1)]2﹣4×1×(k2+5k+9)≥0,
解得k≤﹣;
(2)根據(jù)題意可知x1+x2=2k+1,x1x2=k2+5k+9,
∵x12+x22=39,
∴(x1+x2)2﹣2x1x2=39,
∴(2k+1)2﹣2(k2+5k+9)=39,解得k1=7,k2=﹣4,
∵k≤﹣,
∴k=﹣4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AC、BC的中點(diǎn),F是BC延長線上一點(diǎn),∠F=∠B.
(l)若AB=1O,求FD的長;
(2)若AC=BC.求證:△CDE∽△DFE .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD之間有一景觀池,小雙在A點(diǎn)測得池中噴泉處E點(diǎn)的俯角為42°,在C點(diǎn)測得E點(diǎn)的俯角為45°,點(diǎn)B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,E、F分別為BC,CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對折,得到△BPF,延長FP交AD于點(diǎn)M,交BA的延長線于點(diǎn)Q.連接BM,下列結(jié)論中:①AE=BF; ②AE⊥BF;③AQ=;④∠MBF=60°.
正確的結(jié)論是_____(填正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=,將△ACB繞點(diǎn)A逆時針旋轉(zhuǎn)60°得到△AC′B′,則CB′的長為( 。
A. +B. 1+C. 3D. +
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c的圖象與x軸交于A(﹣3,0)、B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=OA.
(1)求拋物線解析式;
(2)過直線AC上方的拋物線上一點(diǎn)M作y軸的平行線,與直線AC交于點(diǎn)N.已知M點(diǎn)的橫坐標(biāo)為m,試用含m的式子表示MN的長及△ACM的面積S,并求當(dāng)MN的長最大時S的值;
(3)如圖2,D(0,﹣2),連接BD,將△OBD繞平面內(nèi)的某點(diǎn)(記為P)逆時針旋轉(zhuǎn)180°得到△O′B′D′,O、B、D的對應(yīng)點(diǎn)分別為O′、B′、D′.若點(diǎn)B′、D′兩點(diǎn)恰好落在拋物線上,求旋轉(zhuǎn)中心點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在宣傳“民族團(tuán)結(jié)”活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請結(jié)合圖中所給信息,解答下列問題:
(1)本次調(diào)查的學(xué)生共有_____人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名學(xué)生,請估計(jì)選擇“唱歌”的學(xué)生有多少人?
(4)七年一班在最喜歡“器樂”的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機(jī)選出兩名同學(xué)參加學(xué)校的器樂隊(duì),請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù))
(1)該函數(shù)的圖像與軸公共點(diǎn)的個數(shù)是( )
A.0 B.1 C.2 D.1或2
(2)求證:不論為何值,該函數(shù)的圖像的頂點(diǎn)都在函數(shù)的圖像上.
(3)當(dāng)時,求該函數(shù)的圖像的頂點(diǎn)縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就“學(xué)生體育活動興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級參加校籃球隊(duì),請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com