(1)證明:如圖(1)當AB=BC,BE=EC,取AB中點N,連接NE,
則AN=EC=NB=BE,
∴∠BNE=∠BEN=45°,∠ANE=135°,
∵AB=BC,∴∠ACB=45°,
∵CF⊥AC,∴∠ACF=90°,
∴∠ECF=∠ACB+∠ACF=135°,
即∠ANE=∠ECF,
∵∠B=90°,
∴∠1+∠AEB=90°,
∵AE⊥EF,
∴∠2+∠AEB=90°,
∴∠1=∠2,
在△ANE和△ECF中,
,
∴△ANE≌△ECF(ASA),
∴AE=EF;
(2)解:
①當點E與點B重合時,AE與AB重合,EF與BC重合,
AE:EF=AB:BC=3:4;
②比值不變AE:EF=3:4,
證明:如圖(2),過點E作EH⊥BC交AC于H,
則∠1+∠3=90°,
∵AE⊥EF,
∴∠2+∠3=90°,
∴∠1=∠2,
∵AD∥BC,
∴∠4=∠5,
∵∠AHE=∠4+90°,∠ECF=∠5+90°,
∴∠AHE=∠ECF,
∴△AEH∽△FEC,
∴
,
又∵EH⊥BC,AB⊥BC,
所以
,
∴AE:EF=3:4.
分析:(1)當AB=BC,BE=EC,取AB中點N,根據(jù)已知得出AN=EC=NB=BE,進而得出∠ANE=∠ECF,∠1=∠2,即可得出△ANE≌△ECF;
(2)①當點E與點B重合時,AE與AB重合,EF與BC重合,得出AE:EF=AB:BC即可得出答案;
②首先過點E作EH⊥BC交AC于H,利用相似三角形的判定得出△AEH∽△FEC,進而求出即可.
點評:此題主要考查了全等三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì)等知識,根據(jù)已知得出△AEH∽△FEC是解題關(guān)鍵.