【題目】某班有學(xué)生55人,其中男生與女生的人數(shù)之比為65。

1)求出該班男生與女生的人數(shù);

2)學(xué)校要從該班選出20人參加學(xué)校的合唱團(tuán),要求:男生人數(shù)不少于7人;女生人數(shù)超過(guò)男生人

數(shù)2人以上。請(qǐng)問(wèn)男、女生人數(shù)有幾種選擇方案?

【答案】1)該班男生有30人,女生有25人(2)有兩種方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12

【解析】

解:(1)設(shè)男生有6x人,則女生有5x人。

依題意得:6x5x55,∴x5

∴6x30,5x25。

答:該班男生有30人,女生有25人。

2)設(shè)選出男生y人,則選出的女生為(20y)人。

由題意得:,解得:7≤y9∴y的整數(shù)解為:7、8。

當(dāng)y7時(shí),20y13;當(dāng)y8時(shí),20y12。

答:有兩種方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人。

1)設(shè)男生有6x人,則女生有5x人,根據(jù)男女生的人數(shù)的和是55人,即可列方程求解。

2)設(shè)選出男生y人,則選出的女生為(20y)人,根據(jù):男生人數(shù)不少于7人;女生人數(shù)超過(guò)男生人數(shù)2人以上,即可列出不等式組,從而求得y的范圍,再根據(jù)y是整數(shù),即可求得y的整數(shù)值,從而確定方案。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)(1)班所有學(xué)生參加2016年初中畢業(yè)生升學(xué)體育測(cè)試,根據(jù)測(cè)試評(píng)分標(biāo)準(zhǔn),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四等,并繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(未完成),請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

(1)、九年級(jí)(1)班參加體育測(cè)試的學(xué)生有 人;

(2)、將條形統(tǒng)計(jì)圖補(bǔ)充完整.

(3)、在扇形統(tǒng)計(jì)圖中,等級(jí)B部分所占的百分比是 ;

(4)、若該校九年級(jí)學(xué)生共有850人參加體育測(cè)試,估計(jì)達(dá)到A級(jí)和B級(jí)的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)C在第四象限,點(diǎn)B在x軸的正半軸上.∠OAB=90°且OA=AB,OB,OC的長(zhǎng)分別是一元二次方程x2﹣11x+30=0的兩個(gè)根(OB>OC).

(1)求點(diǎn)A和點(diǎn)B的坐標(biāo).
(2)點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,B重合),過(guò)點(diǎn)P的直線l與y軸平行,直線l交邊OA或邊AB于點(diǎn)Q,交邊OC或邊BC于點(diǎn)R.設(shè)點(diǎn)P的橫坐標(biāo)為t,線段QR的長(zhǎng)度為m.已知t=4時(shí),直線l恰好過(guò)點(diǎn)C.當(dāng)0<t<3時(shí),求m關(guān)于t的函數(shù)關(guān)系式.
(3)當(dāng)m=3.5時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列條件下,不能判定ABC≌△A′B′C′是( )

A. A=A′,AB=AB′,BC=BC B. A=A′,C=C′,AC=AC

C. B=B′,C=C′,AC=AC D. BA=BA′,BC=BC′,AC=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊三角形ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E、F,連接AF,BE相交于點(diǎn)P,若AE=CF,則∠APB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+2xa+c經(jīng)過(guò)A(﹣4,0),B(0,4)兩點(diǎn),與x軸交于另一點(diǎn)C,直線y=x+5與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.

(1)求拋物線的解析式;
(2)點(diǎn)P是第二象限拋物線上的一個(gè)動(dòng)點(diǎn),連接EP,過(guò)點(diǎn)E作EP的垂線l,在l上截取線段EF,使EF=EP,且點(diǎn)F在第一象限,過(guò)點(diǎn)F作FM⊥x軸于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段FM的長(zhǎng)度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,過(guò)點(diǎn)E作EH⊥ED交MF的延長(zhǎng)線于點(diǎn)H,連接DH,點(diǎn)G為DH的中點(diǎn),當(dāng)直線PG經(jīng)過(guò)AC的中點(diǎn)Q時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買3個(gè)足球和2個(gè)籃球共需310元.購(gòu)買2個(gè)足球和5個(gè)籃球共需500元.

(1)購(gòu)買一個(gè)足球、一個(gè)籃球各需多少元?

(2)實(shí)驗(yàn)中學(xué)實(shí)際需要一次性購(gòu)買足球和籃球共96個(gè).要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)5800元,這所中學(xué)最多可以購(gòu)買多少個(gè)籃球?

查看答案和解析>>

同步練習(xí)冊(cè)答案