【題目】如圖,在O中,OE垂直于弦AB,垂足為點D,交O于點C,EAC=CAB

(1)求證:直線AE是O的切線;

(2)若AB=8,sinE=,求O的半徑.

【答案】(1)見解析;(2)5

【解析】

試題分析:(1)首先得出OCA+CAD=90°,進而求出EAC+OAC=90°,即可得出答案.

(2)作CFAE于F,根據(jù)角平分線的性質(zhì)和三角函數(shù)求得AE=,DE=,進一步求得CF=CD=2,然后根據(jù)勾股定理列出關(guān)于r的方程,解方程即可求得.

(1)證明:連接OA,

OE垂直于弦AB,

∴∠OCA+CAD=90°,

CO=OA,

∴∠OCA=OAC

∵∠EAC=CAB,

∴∠EAC+OAC=90°

OAAE,

即直線AE是O的切線.

(2)作CFAE于F,

∵∠EAC=CAB

CF=CD,

AB=8,

AD=4,

sinE=,

=,=

AE=,DE=

CF=2,

CD=2,

設(shè)O的半徑r,

在RTAOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42

解得r=5.

∴⊙O的半徑為5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個數(shù)的立方根是﹣3,則這個數(shù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(﹣1,4),且與直線y=﹣x+1相交于A、B兩點(如圖),A點在y軸上,過點B作BCx軸,垂足為點C(﹣3,0).

(1)求二次函數(shù)的表達式;

(2)點N是二次函數(shù)圖象上一點(點N在AB上方),過N作NPx軸,垂足為點P,交AB于點M,求MN的最大值;

(3)在(2)的條件下,點N在何位置時,BM與NC相互垂直平分?并求出所有滿足條件的N點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市一天的最高氣溫為2,最低氣溫為﹣8,那么這天的最高氣溫比最低氣溫高( .

A.﹣10 B.﹣6 C.10 D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,(1,5)所在的象限是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年10月18日,TCL2015長沙國際馬拉松賽正式開賽,來自國內(nèi)外的1.5萬余名選手在長沙這座美麗的城市中奔跑.馬拉松長跑是國際上非常普及的長跑比賽項目,全程距離約為42千米,將數(shù)據(jù)42千米用科學(xué)記數(shù)法表示為(

A.42×103 B.0.42×105 C.4.2×104 D.4.2×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在用描點法畫二次函數(shù)y=ax2+bx+c圖象時,由于粗心,他算錯了一個y值,列出了下面表格:

 x

﹣1 

0

1 

2

3 

 y=ax2+bx+c

5

3 

2

3

6

(1)請指出這個錯誤的y值,并說明理由;

(2)若點M(a,y1),N(a+4,y2)在二次函數(shù)y=ax2+bx+c圖象上,且a>﹣1,試比較y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,AB=AC=5,BC=6,正方形DEFG的頂點D、G分別在AB、AC上,EF在BC上.

(1)求正方形DEFG的邊長;

(2)如圖2,在BC邊上放兩個小正方形DEFG、FGMN,則DE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,B=25°,AD是BC邊上的高,并且AD2=BDCD,則BCA的度數(shù)為多少?

查看答案和解析>>

同步練習(xí)冊答案