根據(jù)圖中數(shù)據(jù),求陰影部分的面積和為           .
8
根據(jù)平移的特征可得陰影部分的面積為(5-1)×(3-1)=10.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

請嘗試解決以下問題:
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,

由旋轉(zhuǎn)可得:AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
(2)運用(1)解答中所積累的經(jīng)驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,且∠BAE=45°,DE=4,求BE的長.

(3)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,若∆ABC固定不動,∆AFG繞點A旋轉(zhuǎn),AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),在旋轉(zhuǎn)過程中,等式BD+CE=DE始終成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△AOB中,∠B=25°,將△AOB繞點O順時針旋轉(zhuǎn) 60°,得到△A¢OB¢,邊A¢B¢
與邊OB交于點C(A¢不在 OB上),則∠A¢CO的度數(shù)為 【   】
A.85°B.75°C.95°D.105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,圖形的對稱軸的條數(shù)是
A.1條B.2條C.3條D.無數(shù)條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在4×4的正方形網(wǎng)格中,△MNP繞某點旋轉(zhuǎn)90°,得到△M1N1P1,則其旋轉(zhuǎn)中心可以是
A.點EB.點FC.點GD.點H

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

和點在平面直角坐標系中的位置如圖所示:

(1)將向右平移2個單位得到,則點的坐標是          ,點的坐標是               ;
(2)將繞點按順時針方向旋轉(zhuǎn),畫出旋轉(zhuǎn)后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等邊三角形ABC和等邊三角形DEC,CE和AC重合,CE=AB,
(1)求證:AD=BE;
(2)若CE繞點C順時針旋轉(zhuǎn)30度,連BD交AC于點G,取AB的中點F連FG,求證:BE=2FG;
(3)在(2)的條件下AB=2,則AG= ______.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列標志中,可以看作是中心對稱圖形的是【   】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下圖是用紙疊成的生活圖案,其中不是軸對稱圖形的是(     )
A.信封B.飛機C.褲子D.襯衣

查看答案和解析>>

同步練習(xí)冊答案