【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y= x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式;
(2)直線y=﹣x+n與該拋物線在第四象限內(nèi)交于點D,與線段BC交于點E,與x軸交于點F,且BE=4EC.
①求n的值;
②連接AC,CD,線段AC與線段DF交于點G,△AGF與△CGD是否全等?請說明理由;
(3)直線y=m(m>0)與該拋物線的交點為M,N(點M在點N的左側(cè)),點 M關(guān)于y軸的對稱點為點M',點H的坐標(biāo)為(1,0).若四邊形OM'NH的面積為 .求點H到OM'的距離d的值.
【答案】
(1)
解:∵拋物線y= x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點,
∴ ,解得 ,
∴該拋物線的解析式y(tǒng)= x2﹣ x﹣3;
(2)
解:①如圖,過點E作EE'⊥x軸于E',則EE'∥OC,
∴ = ,
∵BE=4EC,
∴BE'=4OE',
設(shè)點E的坐標(biāo)為(x,y),則OE'=x,BE'=4x,
∵B(2,0),
∴OB=2,即x+4x=2,
∴x= ,
∵拋物線y= x2﹣ x﹣3與y軸交于點C,
∴C(0,﹣3),
設(shè)直線BC的解析式為y=kx+b',
∵B(2,0),C(0,﹣3),
∴ ,解得 ,
∴直線BC的解析式為y= x﹣3,
當(dāng)x= 時,y=﹣ ,
∴E( ,﹣ ),
把E的坐標(biāo)代入直線y=﹣x+n,可得﹣ +n=﹣ ,
解得n=﹣2;
②△AGF與△CGD全等.理由如下:
∵直線EF的解析式為y=﹣x﹣2,
∴當(dāng)y=0時,x=﹣2,
∴F(﹣2,0),OF=2,
∵A(﹣1,0),
∴OA=1,
∴AF=2﹣1=1,
由 解得 , ,
∵點D在第四象限,
∴點D的坐標(biāo)為(1,﹣3),
∵點C的坐標(biāo)為(0,﹣3),
∴CD∥x軸,CD=1,
∴∠AFG=∠CDG,∠FAG=∠DCG,
∴△AGF≌△CGD;
(3)
解:∵拋物線的對稱軸為x=﹣ = ,直線y=m(m>0)與該拋物線的交點為M,N,
∴點M、N關(guān)于直線x= 對稱,
設(shè)N(t,m),則M(1﹣t,m),
∵點 M關(guān)于y軸的對稱點為點M',
∴M'(t﹣1,m),
∴點M'在直線y=m上,
∴M'N∥x軸,
∴M'N=t﹣(t﹣1)=1,
∵H(1,0),
∴OH=1=M'N,
∴四邊形OM'NH是平行四邊形,
設(shè)直線y=m與y軸交于點P,
∵四邊形OM'NH的面積為 ,
∴OH×OP=1×m= ,即m= ,
∴OP= ,
當(dāng) x2﹣ x﹣3= 時,解得x1=﹣ ,x2= ,
∴點M的坐標(biāo)為(﹣ , ),
∴M'( , ),即PM'= ,
∴Rt△OPM'中,OM'= = ,
∵四邊形OM'NH的面積為 ,
∴OM'×d= ,
∴d= .
【解析】(1)根據(jù)拋物線y= x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點,可得拋物線的解析式;(2)①過點E作EE'⊥x軸于E',則EE'∥OC,根據(jù)平行線分線段成比例定理,可得BE'=4OE',設(shè)點E的坐標(biāo)為(x,y),則OE'=x,BE'=4x,根據(jù)OB=2,可得x= ,再根據(jù)直線BC的解析式為y= x﹣3,即可得到E( ,﹣ ),把E的坐標(biāo)代入直線y=﹣x+n,可得n的值;②根據(jù)F(﹣2,0),A(﹣1,0),可得AF=1,再根據(jù)點D的坐標(biāo)為(1,﹣3),點C的坐標(biāo)為(0,﹣3),可得CD∥x軸,CD=1,再根據(jù)∠AFG=∠CDG,∠FAG=∠DCG,即可判定△AGF≌△CGD;(3)根據(jù)軸對稱的性質(zhì)得出OH=1=M'N,進而判定四邊形OM'NH是平行四邊形,再根據(jù)四邊形OM'NH的面積為 ,求得OP= ,再根據(jù)點M的坐標(biāo)為(﹣ , ),得到PM'= ,Rt△OPM'中,運用勾股定理可得OM'= ,最后根據(jù)OM'×d= ,即可得到d= .
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),Rt△AOB中,∠A=90°,∠AOB=60°,OB=,∠AOB的平分線OC交AB于C,過O點做與OB垂直的直線ON.動點P從點B出發(fā)沿折線BC﹣CO以每秒1個單位長度的速度向終點O運動,運動時間為t秒,同時動點Q從點C出發(fā)沿折線CO﹣ON以相同的速度運動,當(dāng)點P到達點O時P、Q同時停止運動.
(1)求OC、BC的長;
(2)設(shè)△CPQ的面積為S,求S與t的函數(shù)關(guān)系式;
(3)當(dāng)P在OC上Q在ON上運動時,如圖(2),設(shè)PQ與OA交于點M,當(dāng)t為何值時,△OPM為等腰三角形?求出所有滿足條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛在課外書中看到這樣一道有理數(shù)的混合運算題:
計算:
她發(fā)現(xiàn),這個算式反映的是前后兩部分的和,而這兩部分之間存在著某種關(guān)系,利用這種關(guān)系,他順利地解答了這道題。
(1)前后兩部分之間存在著什么關(guān)系?
(2)先計算哪步分比較簡便?并請計算比較簡便的那部分。
(3)利用(1)中的關(guān)系,直接寫出另一部分的結(jié)果。
(4)根據(jù)以上分析,求出原式的結(jié)果。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探究證明:
在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于點D,BE⊥MN于點E,當(dāng)直線MN繞點C旋轉(zhuǎn)到圖1的位置時,求證:DE=AD+BE;
(2)發(fā)現(xiàn)探究:
當(dāng)直線MN繞點C旋轉(zhuǎn)到圖2的位置時,(1)中的結(jié)論是否成立,如果不成立,DE、AD、BE應(yīng)滿足的關(guān)系是_____.
(3)解決問題:
當(dāng)直線MN繞點C旋轉(zhuǎn)到圖3的位置時,若BE=8,AD=2,請直接寫出DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=17,AC=10,BC邊上的高AD=8,則邊BC的長為( )
A. 21 B. 15 C. 9 D. 9或21
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“道路交通管理條例”規(guī)定:小汽車在城街上行駛速度不得超過70千米/小時,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面對車速檢測儀A正前方30米B處,過了2秒后,測得小汽車C與車速檢測儀A間距離為50米,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少6萬元.
A型 | B型 | |
價格萬元臺 | a | b |
處理污水量噸月 | 240 | 200 |
求a,b的值;
治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認為該公司有哪幾種購買方案;
在的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OE平分∠AOD,OF平分∠BOD.
(1)若∠AOC=70°,求∠DOE和∠EOF的度數(shù);
(2)請寫出圖中∠AOD的補角和∠AOE的余角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】梅嶺中學(xué)為了解“課程選修”的情況,對報名參加“藝術(shù)欣賞”,“科技制作”,“數(shù)學(xué)思維”,“閱讀寫作”這四個選修項目的學(xué)生(每人限報一課)進行抽樣調(diào)查,下面是根據(jù)收集的數(shù)據(jù)繪制的不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了______名學(xué)生,扇形統(tǒng)計圖中“藝術(shù)欣賞”部分的圓心角是______度;
(2)請把這個條形統(tǒng)計圖補充完整;
(3)現(xiàn)該校共有800名學(xué)生報名參加這四個選修項目,請你估計其中有多少名學(xué)生選修 “科技制作”項目.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com