【題目】在平面直角坐標(biāo)系中(如圖),已知二次函數(shù)(其中a、b、c是常數(shù),且a0)的圖像經(jīng)過點(diǎn)A0,-3)、B1,0)、C3,0),聯(lián)結(jié)AB、AC

1)求這個(gè)二次函數(shù)的解析式;

2)點(diǎn)D是線段AC上的一點(diǎn),聯(lián)結(jié)BD,如果,求tan∠DBC的值;

3)如果點(diǎn)E在該二次函數(shù)圖像的對(duì)稱軸上,當(dāng)AC平分∠BAE時(shí),求點(diǎn)E的坐標(biāo).

【答案】(1);(2;(3E2,

【解析】

1)直接利用待定系數(shù)法,把AB、C三點(diǎn)代入解析式,即可得到答案;

2)過點(diǎn)DDHBCH,在ABC中,設(shè)AC邊上的高為h,利用面積的比得到,然后求出DH和BH,即可得到答案;

3)延長AEx軸,與x軸交于點(diǎn)F,先證明△OAB∽△OFA,求出點(diǎn)F的坐標(biāo),然后求出直線AF的方程,即可求出點(diǎn)E的坐標(biāo).

解:(1)將A0-3)、B10)、C30)代入得,

解得

∴此拋物線的表達(dá)式是:

2)過點(diǎn)DDHBCH,

△ABC中,設(shè)AC邊上的高為h,則

∵DH//y軸,

OA=OC=3,則∠ACO=45°,

∴△CDH為等腰直角三角形,

tanDBC=.

3)延長AEx軸,與x軸交于點(diǎn)F

∵OA=OC=3,

∴∠OAC=OCA=45°,

OAB=OACBAC=45°BAC,∠OFA=OCAFAC=45°FAC

BAC=FAC,

∴∠OAB=OFA

∴△OAB∽△OFA

OF=9,即F9,0);

設(shè)直線AF的解析式為y=kx+bk≠0),

可得 ,解得,

∴直線AF的解析式為:,

x=2代入直線AF的解析式得:

E2,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于點(diǎn)、,與軸交于點(diǎn),直線交二次函數(shù)圖象的對(duì)稱軸于點(diǎn),若點(diǎn)C的中點(diǎn).

1)求的值;

2)若二次函數(shù)圖象上有一點(diǎn),使得,求點(diǎn)的坐標(biāo);

3)對(duì)于(2)中的點(diǎn),在二次函數(shù)圖象上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上

B.通過拋擲一枚均勻的硬幣確定誰先發(fā)球的比賽規(guī)則是不公平的

C.“367人中至少有2人生日相同是必然事件

D.四張分別畫有等邊三角形、平行四邊形、菱形、圓的卡片,從中隨機(jī)抽取一張,恰好抽到中心對(duì)稱圖形的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣1,5)、B(﹣2,0)、C(﹣43).

1)請(qǐng)?jiān)趫D中畫出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1

2)以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸的左側(cè)畫出△A2B2C2,并求出△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知RtAOB的兩直角邊OA、OB分別在x軸、y軸的正半軸上(OAOB).且OA、OB的長分別是一元二次方程x214x+480的兩個(gè)根,線段AB的垂直平分線CDAB于點(diǎn)C,交x軸于點(diǎn)D,點(diǎn)P是直線AB上一個(gè)動(dòng)點(diǎn),點(diǎn)Q是直線CD上一個(gè)動(dòng)點(diǎn).

1)求線段AB的長度:

2)過動(dòng)點(diǎn)PPFOAF,PEOBE,點(diǎn)P在移動(dòng)過程中,線段EF的長度也在改變,請(qǐng)求出線段EF的最小值:

3)在坐標(biāo)平面內(nèi)是否存在一點(diǎn)M,使以點(diǎn)C、P、Q、M為頂點(diǎn)的四邊形是正方形,且該正方形的邊長為AB長?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo):若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商用套餐正式上線.某移動(dòng)營業(yè)廳為了吸引用戶,設(shè)計(jì)了兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖),轉(zhuǎn)盤被等分為個(gè)扇形,分別為紅色和黃色;轉(zhuǎn)盤被等分為個(gè)扇形,分別為黃色、紅色、藍(lán)色,指針固定不動(dòng).營業(yè)廳規(guī)定,每位新用戶可分別轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤各一次,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域顏色相同,則該用戶可免費(fèi)領(lǐng)取通用流量(若指針停在分割線上,則視其指向分割線右側(cè)的扇形).小王辦理業(yè)務(wù)獲得一次轉(zhuǎn)轉(zhuǎn)盤的機(jī)會(huì),求他能免費(fèi)領(lǐng)取通用流量的概率.

A B

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD邊長為6,∠BAD120°,點(diǎn)E、F分別在ABAD上且BEAF,則EF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)AB、C坐標(biāo)分別為(01)、(0,5)、(3,0),D是平面內(nèi)一點(diǎn),且∠ADB45°,則線段CD的最大值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與軸交于點(diǎn).二次函數(shù)的圖像經(jīng)過點(diǎn),與軸交于點(diǎn),與一次函數(shù)的圖像交于另一點(diǎn).

1)求二次函數(shù)的表達(dá)式;

2)當(dāng)時(shí),直接寫出的取值范圍;

3)平移,使點(diǎn)的對(duì)應(yīng)點(diǎn)落在二次函數(shù)第四象限的圖像上,點(diǎn)的對(duì)應(yīng)點(diǎn)落在直線上,求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案