【題目】如圖,已知拋物線y=ax2+ x+c與x軸交于A,B兩點,與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣ x﹣4與x軸交于點D,點P是拋物線y=ax2+ x+c上的一動點,過點P作PE⊥x軸,垂足為E,交直線l于點F.
(1)試求該拋物線表達式;
(2)如圖(1),四邊形PCOF是平行四邊形,求P點的坐標;
(3)如圖(2),過點P作PH⊥y軸,垂足為H,連接AC.
①求證:△ACD是直角三角形;
②試問當P點橫坐標為何值時,使得以點P、C、H為頂點的三角形與△ACD相似?
【答案】
(1)
解:由題意得: ,解得: ,
∴拋物線的表達式為y= x2+ x﹣4.
(2)
解:設P(m, m2+ m﹣4),則F(m,﹣ m﹣4).
∴PF=(﹣ m﹣4)﹣( m2+ m﹣4)=﹣ m2﹣ m.
∵PE⊥x軸,
∴PF∥OC.
∴PF=OC時,四邊形PCOF是平行四邊形.
∴﹣ m2﹣ m=4,解得:m=﹣ 或m=﹣8.
當m=﹣ 時, m2+ m﹣4=﹣ ,
當m=﹣8時, m2+ m﹣4=﹣4.
∴點P的坐標為(﹣ ,﹣ )或(﹣8,﹣4).
(3)
解:①證明:把y=0代入y=﹣ x﹣4得:﹣ x﹣4=0,解得:x=﹣8.
∴D(﹣8,0).
∴OD=8.
∵A(2,0),C(0,﹣4),
∴AD=2﹣(﹣8)=10.
由兩點間的距離公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,
∴AC2+CD2=AD2.
∴△ACD是直角三角形,且∠ACD=90°.
②由①得∠ACD=90°.
當△ACD∽△CHP時, = ,即 = 或 = ,
解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.
當△ACD∽△PHC時, = ,即 = 或即 = .
解得:n=0(舍去)或n=2或n=﹣18.
綜上所述,點P的橫坐標為﹣5.5或﹣10.5或2或﹣18時,使得以點P、C、H為頂點的三角形與△ACD相似.
【解析】(1)將點A和點C的坐標代入拋物線的解析式可得到關于a、c的方程組,然后解方程組求得a、c的值即可;(2)設P(m, m2+ m﹣4),則F(m,﹣ m﹣4),則PF=﹣ m2﹣ m,當PF=OC時,四邊形PCOF是平行四邊形,然后依據(jù)PF=OC列方程求解即可;(3)①先求得點D的坐標,然后再求得AC、DC、AD的長,最后依據(jù)勾股定理的逆定理求解即可;②分為△ACD∽△CHP、△ACD∽△PHC兩種情況,然后依據(jù)相似三角形對應成比例列方程求解即可
【考點精析】根據(jù)題目的已知條件,利用相似三角形的應用的相關知識可以得到問題的答案,需要掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣經(jīng)過點A(1,0)和點B(5,0),與y軸交于點C.
(1)求此拋物線的解析式;
(2)以點A為圓心,作與直線BC相切的⊙A,求⊙A的半徑
(3)在直線BC上方的拋物線上任取一點P,連接PB,PC,請問:△PBC的面積是否存在最大值?若存在,求出這個最大值的此時點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時,一個月工作25天.月工資底薪800元,另加計件工資.加工1件A型服裝計酬16元,加工1件B型服裝計酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件A型服裝和2件B型服裝需4小時,加工3件A型服裝和1件B型服裝需7小時.(工人月工資=底薪+計件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時?
(2)一段時間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運用所學知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)這次調(diào)查的市民人數(shù)為人,m= , n=;
(2)補全條形統(tǒng)計圖;
(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,∠DAB=60°,AB=DE,則下列結(jié)論成立的個數(shù)是( )
①AB∥DE;②EF∥AD∥BC;③AF=CD;④四邊形ACDF是平行四邊形;⑤六邊形ABCDEF既是中心對稱圖形,又是軸對稱圖形.
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,規(guī)定:拋物線y=a(x﹣h)2+k的伴隨直線為y=a(x﹣h)+k.例如:拋物線y=2(x+1)2﹣3的伴隨直線為y=2(x+1)﹣3,即y=2x﹣1.
(1)在上面規(guī)定下,拋物線y=(x+1)2﹣4的頂點坐標為 , 伴隨直線為 , 拋物線y=(x+1)2﹣4與其伴隨直線的交點坐標為和;
(2)如圖,頂點在第一象限的拋物線y=m(x﹣1)2﹣4m與其伴隨直線相交于點A,B(點A在點B的右側(cè)),與x軸交于點C,D.
①若∠CAB=90°,求m的值;
②如果點P(x,y)是直線BC上方拋物線上的一個動點,△PBC的面積記為S,當S取得最大值 時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC邊上的一個動點,連接AD,過點C作CE⊥AD于E,連接BE,在點D變化的過程中,線段BE的最小值是cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點O出發(fā),向點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B以 個單位/秒的速度勻速運動,連接PQ,設運動時間為t秒.
(1)求拋物線的解析式;
(2)問:當t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當EF∥PQ時,求點F的坐標;
(4)設拋物線頂點為M,連接BP,BM,MQ,問:是否存在t的值,使以B,Q,M為頂點的三角形與以O,B,P為頂點的三角形相似?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com