【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是12,腰AB的垂直平分線(xiàn)EF分別交AB,AC于點(diǎn)E、F,若點(diǎn)D為底邊BC的中點(diǎn),點(diǎn)M為線(xiàn)段EF上一動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為______.
【答案】8
【解析】
連接AD交EF與點(diǎn)M′,連結(jié)AM,由線(xiàn)段垂直平分線(xiàn)的性質(zhì)可知AM=MB,則BM+DM=AM+DM,故此當(dāng)A、M、D在一條直線(xiàn)上時(shí),MB+DM有最小值,然后依據(jù)要三角形三線(xiàn)合一的性質(zhì)可證明AD為△ABC底邊上的高線(xiàn),依據(jù)三角形的面積為12可求得AD的長(zhǎng).
連接AD交EF與點(diǎn)M′,連結(jié)AM.
∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),
∴AD⊥BC,
∴S△ABC=BCAD=×4×AD=12,解得AD=6,
∵EF是線(xiàn)段AB的垂直平分線(xiàn),
∴AM=BM.
∴BM+MD=MD+AM.
∴當(dāng)點(diǎn)M位于點(diǎn)M′處時(shí),MB+MD有最小值,最小值6.
∴△BDM的周長(zhǎng)的最小值為DB+AD=2+6=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,、兩點(diǎn)在反比例函數(shù)的圖象上,、兩點(diǎn)在反比例函數(shù)的圖象上,軸于點(diǎn),軸于點(diǎn),,,,則的值是( )
A.8B.6C.4D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八(1)班同學(xué)為了解2015年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,
月均用水量x(t) | 頻數(shù)(戶(hù)) | 頻率 |
0<x≤5 | 6 | 0.12 |
5<x≤10 | m | 0.24 |
10<x≤15 | 16 | 0.32 |
15<x≤20 | 10 | 0.20 |
20<x≤25 | 4 | n |
60≤x<70 | 2 | 0.04 |
請(qǐng)解答以下問(wèn)題:
(1)求出嗎、M,n的值,并把頻數(shù)分布直方圖補(bǔ)充完整;
(2)若該小區(qū)有1000戶(hù)家庭,求該小區(qū)月均用水量超過(guò)10t的家庭大約有多少戶(hù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD
其中正確結(jié)論的為______(請(qǐng)將所有正確的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是課本中“作一個(gè)角等于已知角”的尺規(guī)作圖過(guò)程.已知:∠AOB. 求作:一個(gè)角,使它等于∠AOB.作法:如圖
(1)作射線(xiàn)O'A';
(2)以O為圓心,任意長(zhǎng)為半徑作弧,交OA于C,交OB于D;
(3)以O'為圓心,OC為半徑作弧C'E',交O'A'于C';
(4)以C'為圓心,CD為半徑作弧,交弧C'E'于D';
(5)過(guò)點(diǎn)D'作射線(xiàn)O'B'.
則∠A'O'B'就是所求作的角.
請(qǐng)回答:該作圖的依據(jù)是( 。
A.SSSB.SASC.ASAD.AAS
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察與思考:閱讀下列材料,并解決后面的問(wèn)題
在銳角△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,過(guò)A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.
即:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等在銳角三角形中,若已知三個(gè)元素(至少有一條邊),運(yùn)用上述結(jié)論和有關(guān)定理就可以求出其余三個(gè)未知元素.
根據(jù)上述材料,完成下列各題.
(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A= ;AC= ;
(2)自從去年日本政府自主自導(dǎo)“釣魚(yú)島國(guó)有化”鬧劇以來(lái),我國(guó)政府靈活應(yīng)對(duì),現(xiàn)如今已對(duì)釣魚(yú)島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測(cè)得A在我漁政船的北偏西30°的方向上,隨后以40海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測(cè)得釣魚(yú)島A在的北偏西75°的方向上,求此時(shí)漁政204船距釣魚(yú)島A的距離AB.(結(jié)果精確到0.01,≈2.449)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB<BC.
(1)利用尺規(guī)作圖,在AD邊上確定點(diǎn)E,使點(diǎn)E到邊AB,BC的距離相等(不寫(xiě)作法,保留作圖痕跡);
(2)若BC=8,CD=5,則DE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(jī)/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫(xiě)出表格中a,b,c的值;
(2)分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡(jiǎn)要分析這兩名隊(duì)員的射擊訓(xùn)練成績(jī).若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一塊長(zhǎng)16m,寬12m的矩形荒地上建造一個(gè)花園,要求花軒占地面積為荒地面積的一半,下面分別是小強(qiáng)和小穎的設(shè)計(jì)方案.
(1)你認(rèn)為小強(qiáng)的結(jié)果對(duì)嗎?請(qǐng)說(shuō)明理由.
(2)請(qǐng)你幫助小穎求出圖中的x.
(3)你還有其他的設(shè)計(jì)方案嗎?請(qǐng)?jiān)趫D(3)中畫(huà)出一個(gè)與圖(1)(2)有共同特點(diǎn)的設(shè)計(jì)草圖,并加以說(shuō)明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com