【題目】如圖,下列條件之一能使平行四邊形ABCD是菱形的為( )
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.
A.①③
B.②③
C.③④
D.①②③
【答案】A
【解析】解:①ABCD中,AC⊥BD,根據(jù)對角線互相垂直的平行四邊形是菱形,即可判定ABCD是菱形;故①正確;
②ABCD中,∠BAD=90°,根據(jù)有一個角是直角的平行四邊形是矩形,即可判定ABCD是矩形,而不能判定ABCD是菱形;故②錯誤;
③ABCD中,AB=BC,根據(jù)一組鄰邊相等的平行四邊形是菱形,即可判定ABCD是菱形;故③正確;
D、ABCD中,AC=BD,根據(jù)對角線相等的平行四邊形是矩形,即可判定ABCD是矩形,而不能判定ABCD是菱形;故④錯誤.
故答案為:A.
根據(jù)對角線互相垂直的平行四邊形是菱形,根據(jù)有一個角是直角的平行四邊形是矩形,根據(jù)一組鄰邊相等的平行四邊形是菱形,根據(jù)對角線相等的平行四邊形是矩形;判斷即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋中裝有20個球,其中7個黃球,8個黑球,5個紅球,這些球只有顏色不同,其它都相同.
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個球是黑球的概率是 ,求從袋中取出黑球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列現(xiàn)象:①電梯的升降運(yùn)動;②飛機(jī)在地面上沿直線滑行;③風(fēng)車的轉(zhuǎn)動;④鐘擺的擺動.其中屬于平移的是( )
A. ①③B. ①②C. ②③D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x與雙曲線y=(x>0)交于點A,將直線y=x向下平移個6單位后,與雙曲線y=(x>0)交于點B,與x軸交于點C,則C點的坐標(biāo)為_____;若=2,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)與一次函數(shù)y=kx+6交于點C(2,4),一次函數(shù)圖象與兩坐標(biāo)軸分別交于點A和點B,動點P從點A出發(fā),沿AB以每秒1個單位長度的速度向點B運(yùn)動;同時,動點Q從點O出發(fā),沿OA以相同的速度向點A運(yùn)動,運(yùn)動時間為t秒(0<t≤6),以點P為圓心,PA為半徑的⊙P與AB交于點M,與OA交于點N,連接MN、MQ.
(1)求m與k的值;
(2)當(dāng)t為何值時,點Q與點N重合;
(3)若△MNQ的面積為S,試求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于點A(2,0)和點B,與y軸交于點C,頂點為點D,對稱軸為直線x=﹣1,點E為線段AC的中點,點F為x軸上一動點.
(1)直接寫出點B的坐標(biāo),并求出拋物線的函數(shù)關(guān)系式;
(2)當(dāng)點F的橫坐標(biāo)為﹣3時,線段EF上存在點H,使△CDH的周長最小,請求出點H,使△CDH的周長最小,請求出點H的坐標(biāo);
(3)在y軸左側(cè)的拋物線上是否存在點P,使以P,F,C,D為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】政府為了更好地加強(qiáng)城市建設(shè),就社會熱點問題廣泛征求市民意見,調(diào)查方式是發(fā)調(diào)查表,要求每位被調(diào)查人員只寫一個你最關(guān)心的有關(guān)城市建設(shè)的問題,經(jīng)統(tǒng)計整理,發(fā)現(xiàn)對環(huán)境保護(hù)問題提出的最多,有700人,同時作出相應(yīng)的條形統(tǒng)計圖,如圖所示,請回答下列問題.
(1)共收回調(diào)查表 張;
(2)提道路交通問題的有 人;
(3)請你把這個條形統(tǒng)計圖用扇形統(tǒng)計圖表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的直徑為5,sinA=,求BH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com