【題目】如圖,ABO的直徑,PBA延長線上一點,CGO的弦PCAABC,CGAB,垂足為D

1)求證:PCO的切線;

2)求證:;

3)過點AAEPCO于點E,交CD于點F,連接BE,若sinP,CF5,求BE的長.

【答案】(1)見解析;(2)BE=12.

【解析】

(1)連接OC,由PC切⊙O于點C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB為⊙O的直徑,得到∠ABC+∠OAC=90°,由于OC=OA,證得∠OCA=∠OAC,于是得到結(jié)論;
(2)由AE∥PC,得到∠PCA=∠CAF根據(jù)垂徑定理得到弧AC=AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根據(jù)等腰三角形的性質(zhì)得到CF=AF,在Rt△AFD中,AF=5,sin∠FAD=,求得FD=3,AD=4,CD=8,在Rt△OCD中,設(shè)OC=r,根據(jù)勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB為⊙O的直徑,得到∠AEB=90°,在Rt△ABE中,由sin∠EAD=,得到,于是求得結(jié)論.

(1)證明:連接OC,

∵PC切⊙O于點C,

∴OC⊥PC,

∴∠PCO=90°,

∴∠PCA+∠OCA=90°,

∵AB為⊙O的直徑,

∴∠ACB=90°,

∴∠ABC+∠OAC=90°,

∵OC=OA,

∴∠OCA=∠OAC,

∴∠PCA=∠ABC;

(2)解:∵AE∥PC,

∴∠PCA=∠CAF,

∵AB⊥CG,

∴弧AC=AG,

∴∠ACF=∠ABC,

∵∠PCA=∠ABC,

∴∠ACF=∠CAF,

∴CF=AF,

∵CF=5,

∴AF=5,

∵AE∥PC,

∴∠FAD=∠P,

∵sin∠P=,

∴sin∠FAD=,

在Rt△AFD中,AF=5,sin∠FAD=

∴FD=3,AD=4,∴CD=8,

在Rt△OCD中,設(shè)OC=r,

∴r2=(r﹣4)2+82 ,

∴r=10,

∴AB=2r=20,

∵AB為⊙O的直徑,

∴∠AEB=90°,在Rt△ABE中,

∵sin∠EAD=,∴

∵AB=20,

∴BE=12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在矩形ABCD中,AD2AB,點E在直線AD上,連接BE,CE,若BEAD,則∠BEC的大小為_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標(biāo)為(-3,0)。

(1)求點B的坐標(biāo);

(2)已知,C為拋物線與y軸的交點。

若點P在拋物線上,且,求點P的坐標(biāo);

設(shè)點Q是線段AC上的動點,作QDx軸交拋物線于點D,求線段QD長度的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形內(nèi)一點,將線段繞點順時針旋轉(zhuǎn)60°得到線段,連接.若,,則四邊形的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1.在邊長為10的正方形中,點在邊上移動(點不與點,重合),的垂直平分線分別交,于點,將正方形沿所在直線折疊,則點的對應(yīng)點為點,點落在點處,交于點,

1)若,求的長;

2)隨著點在邊上位置的變化,的度數(shù)是否發(fā)生變化?若變化,請說明理由;若不變,請求出的度數(shù);

3)隨著點在邊上位置的變化,點在邊上位置也發(fā)生變化,若點恰好為的中點(如圖2),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù) y=ax2+bx+c(a≠0),過(1,y1)(2,y2).

①若 y1>0 時,則 a+b+c>0

②若 a=b 時,則 y1<y2

③若 y1<0,y2>0,且 a+b<0,則 a>0

④若 b=2a﹣1,c=a﹣3,且 y1>0,則拋物線的頂點一定在第三象限上述四個判斷正確的有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春季流感爆發(fā),有一人患了流感,經(jīng)過兩輪傳染后共有人患了流感,

1)每輪傳染中平均一個人傳染了幾個人?

2)經(jīng)過三輪傳染后共有多少人患了流感?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線C1:y=ax2+bx+1的頂點坐標(biāo)為D(1,0)且經(jīng)過點(0,1),將拋物線C1向右平移1個單位,向下平移1個單位得到拋物線C2,直線y=x+c,經(jīng)過點Dy軸于點A,交拋物線C2于點B,拋物線C2的頂點為P.

(1)求拋物線C1的解析式;

(2)如圖2,連結(jié)AP,過點BBC⊥APAP的延長線于C,設(shè)點Q為拋物線上點P至點B之間的一動點,連結(jié)BQ并延長交AC于點F,

當(dāng)點Q運動到什么位置時,SPBD×SBCF=8?

連接PQ并延長交BC于點E,試證明:FC(AC+EC)為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A1,0)、B3,2)、C01)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)沿x軸向左平移2個單位,得到A1B1C1,不畫圖直接寫出發(fā)生變化后的點的坐標(biāo)。點的坐標(biāo)是 ;

(2)A點為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為21,則點的坐標(biāo)是  ;

(3) A2B2C2的面積是 平方單位.

查看答案和解析>>

同步練習(xí)冊答案