【題目】如圖:已知等邊△ABC中,D是AC的中點(diǎn),E是BC延長(zhǎng)線上的一點(diǎn),且CE=CD,DM⊥BC,垂足為M,求證:M是BE的中點(diǎn).
【答案】證明:連接BD,
∵在等邊△ABC,且D是AC的中點(diǎn),
∴∠DBC= ∠ABC= ×60°=30°,∠ACB=60°,
∵CE=CD,
∴∠CDE=∠E,
∵∠ACB=∠CDE+∠E,
∴∠E=30°,
∴∠DBC=∠E=30°,
∴BD=ED,△BDE為等腰三角形,
又∵DM⊥BC,
∴M是BE的中點(diǎn).
【解析】要證M是BE的中點(diǎn),根據(jù)題意可知,證明△BDE△為等腰三角形,利用等腰三角形三線合一的性質(zhì)即可得證。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等邊三角形的性質(zhì)(等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次知識(shí)競(jìng)賽中,甲、乙兩人進(jìn)入到“必答題”環(huán)節(jié).規(guī)則是:兩人輪流答題,每人都要回答20道題,每道題回答正確得分,回答錯(cuò)誤或放棄回答扣分.當(dāng)甲、乙兩人恰好都答完12道題時(shí),甲答對(duì)了9道題,得分為39分;乙答對(duì)了10道題,得分為46分.
(1)求和的值;
(2)規(guī)定此環(huán)節(jié)得分不低于60分能晉級(jí),甲在剩下的比賽中至少還要答對(duì)多少道題才能順利晉級(jí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b,函數(shù)值y隨自變置x的增大而減小,且kb<0,則函數(shù)y=kx+b的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)三角形的兩邊長(zhǎng)分別為3和7,第三邊長(zhǎng)為整數(shù),則第三邊長(zhǎng)度的最小值是( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列三條線段能構(gòu)成三角形的是( )
A. 1,2,3B. 3,4,5C. 3,6,9,D. 3,7,4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如3+2=(1+)2.善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把類(lèi)似a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=,用含m、n的式子分別表示a、b,得:a=__,b=__;
(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空:__+__=(___)+__)2;
(3)若a+4=,且a、m、n均為正整數(shù),求a的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于 x 的二次三項(xiàng)式 x2 m 1 x 16 可以用完全平方公式進(jìn)行因式分解,則m _________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A、B、C三點(diǎn)在格點(diǎn)上.
①作出△ABC關(guān)于x軸對(duì)稱的△A1B1C1 , 并寫(xiě)出點(diǎn)C1的坐標(biāo);②在y軸上找點(diǎn)D,使得AD+BD最小,作出點(diǎn)D并寫(xiě)出點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com