【題目】如圖,△ABC 頂點(diǎn)的坐標(biāo)分別為 A (1,-1)、B(3,-1)、C(4,1).

⑴將△ABC向上平移1個(gè)單位,再向左平移1個(gè)單位,請(qǐng)畫(huà)出平移后得到的△A1B1C1并寫(xiě)出點(diǎn) A1B1、C1 的坐標(biāo);

⑵若△A1B1C1 與△A1B1D 全等(D 點(diǎn)與 C1 不重合),直接寫(xiě)出點(diǎn)D的坐標(biāo).

【答案】(1)畫(huà)圖略,A1(0,0)、B1(2,0)、C1(3,2);(2)D(-1,2)或(-1,-2)或(3,-2)

【解析】

(1)根據(jù)關(guān)于平移的點(diǎn)的坐標(biāo)特點(diǎn)畫(huà)出△A1B1C1,寫(xiě)出各點(diǎn)的坐標(biāo)即可;

(2)利用全等三角形的判定方法,寫(xiě)出D點(diǎn)坐標(biāo)即可.

解:(1)如圖所示:△A1B1C1,即為所求,

A1(0,0)、B1(2,0)、C1(3,2);

(2)D(-1,2)或(-1,-2)或(3,-2)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a、b、c滿足ababc,有下列結(jié)論:

c≠0,則;a3,則bc9;

abc,則abc0;abc中只有兩個(gè)數(shù)相等,則abc8

其中正確的是 (把所有正確結(jié)論的序號(hào)都選上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1的小正方形組成的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,已知格點(diǎn)三角形ABC(三角形的三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)上).

(1)寫(xiě)出△ABC的面積:_______.

(2)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1.

(3)寫(xiě)出點(diǎn)B及其對(duì)稱點(diǎn)B1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,CD是∠ACB的角平分線,CEAB邊上的高,

1)若∠A=40°,∠B=60°,求∠DCE的度數(shù).

2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AD⊥BC于D,若BD=AD,F(xiàn)D=CD.

(1)求證:∠FBD=∠CAD;

(2)求證:BE⊥AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,直線l經(jīng)過(guò)A(4,0)和B(0,4)兩點(diǎn),拋物線y=a(x﹣h)2的頂點(diǎn)為P(1,0),直線l與拋物線的交點(diǎn)為M.

(1)求直線l的函數(shù)解析式;
(2)若SAMP=3,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AE=AB,AF=AC.試判斷線段EC與BF的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1,AB⊥BDB,ED⊥BDD,點(diǎn)C在直線BD上且與F重合,AC=EF,BC=DE .

(1)請(qǐng)說(shuō)明△ABC≌△FDE,并判斷AC是否垂直FE?

(2)若將△ABC 沿BD方向平移至如圖2的位置時(shí),且其余條件不變,則AC是否垂直FE?請(qǐng)說(shuō)明為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 閱讀理解我們知道在直角三角形中,有無(wú)數(shù)組勾股數(shù)例如:5、12、13;9、40、41;……但其中也有一些特殊的勾股數(shù),例如:3、4、5;是三個(gè)連續(xù)正整數(shù)組成的勾股數(shù).

解決問(wèn)題:① 在無(wú)數(shù)組勾股數(shù)中,是否存在三個(gè)連續(xù)偶數(shù)能組成勾股數(shù)?

答: ,若存在,試寫(xiě)出一組勾股數(shù): .

在無(wú)數(shù)組勾股數(shù)中,是否還存在其它的三個(gè)連續(xù)正整數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說(shuō)明理由.

在無(wú)數(shù)組勾股數(shù)中,是否存在三個(gè)連續(xù)奇數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說(shuō)明理由.

探索升華:是否存在銳角ABC三邊也為連續(xù)正整數(shù);且同時(shí)還滿足:∠BCA;ABC=2BAC若存在,求出ABC三邊的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案