【題目】閱讀材料
如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
解決問(wèn)題
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請(qǐng)說(shuō)明理由;如不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請(qǐng)直接寫(xiě)出 的值(用含α的式子表示出來(lái))
【答案】
(1)
解:猜想:BF=CD.理由如下:
如答圖②所示,連接OC、OD.
∵△ABC為等腰直角三角形,點(diǎn)O為斜邊AB的中點(diǎn),
∴OB=OC,∠BOC=90°.
∵△DEF為等腰直角三角形,點(diǎn)O為斜邊EF的中點(diǎn),
∴OF=OD,∠DOF=90°.
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
∵在△BOF與△COD中,
∴△BOF≌△COD(SAS),
∴BF=CD
(2)
解:答:(1)中的結(jié)論不成立.
如答圖③所示,連接OC、OD.
∵△ABC為等邊三角形,點(diǎn)O為邊AB的中點(diǎn),
∴ =tan30°= ,∠BOC=90°.
∵△DEF為等邊三角形,點(diǎn)O為邊EF的中點(diǎn),
∴ =tan30°= ,∠DOF=90°.
∴ = = .
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
在△BOF與△COD中,
∵ = = ,∠BOF=∠COD,
∴△BOF∽△COD,
∴ =
(3)
解:如答圖④所示,連接OC、OD.
∵△ABC為等腰三角形,點(diǎn)O為底邊AB的中點(diǎn),
∴ =tan ,∠BOC=90°.
∵△DEF為等腰三角形,點(diǎn)O為底邊EF的中點(diǎn),
∴ =tan ,∠DOF=90°.
∴ = =tan .
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
在△BOF與△COD中,
∵ = =tan ,∠BOF=∠COD,
∴△BOF∽△COD,
∴ =tan
【解析】(1)如答圖②所示,連接OC、OD,證明△BOF≌△COD;(2)如答圖③所示,連接OC、OD,證明△BOF∽△COD,相似比為 ;(3)如答圖④所示,連接OC、OD,證明△BOF∽△COD,相似比為tan .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)(2y﹣z):(z+2x):y=1:5:2,則(3y﹣z):(2z﹣x):(x+3y)=( )
A.1:5:7
B.3:5:7
C.3:5:8
D.2:5:8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)對(duì)蘇科版八(下)教材一道習(xí)題的探索研究,我們知道:一次函數(shù)y=x﹣1的圖象可以由正比例函數(shù)y=x的圖象向右平移1個(gè)單位長(zhǎng)度得到類(lèi)似的,函數(shù) 的圖象是由反比例函數(shù) 的圖象向左平移2個(gè)單位長(zhǎng)度得到.靈活運(yùn)用這一知識(shí)解決問(wèn)題.如圖,已知反比例函數(shù) 的圖象C與正比例函數(shù)y=ax(a≠0)的圖象l相交于點(diǎn)A(2,2)和點(diǎn)B.
(1)寫(xiě)出點(diǎn)B的坐標(biāo),并求a的值;
(2)將函數(shù) 的圖象和直線AB同時(shí)向右平移n(n>0)個(gè)單位長(zhǎng)度,得到的圖象分別記為C′和l′,已知圖象C′經(jīng)過(guò)點(diǎn)M(2,4).
①求n的值;
②分別寫(xiě)出平移后的兩個(gè)圖象C′和l′對(duì)應(yīng)的函數(shù)關(guān)系式;
③直接寫(xiě)出不等式 的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P為線段BC上的一動(dòng)點(diǎn),且和B、C不重合,連接PA,過(guò)P作PE⊥PA交CD所在直線于E.設(shè)BP=x,CE=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)若點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí),點(diǎn)E總在線段CD上,求m的取值范圍;
(3)如圖2,若m=4,將△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一張長(zhǎng)9cm,寬3cm的矩形紙片,如圖所示,把它折疊使D點(diǎn)與B點(diǎn)重合,你能求出EF的長(zhǎng)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀材料)
∵<<,即2<<3,
∴1<<2.
∴﹣1的整數(shù)部分為1.
∴﹣1的小數(shù)部分為﹣2
(解決問(wèn)題)9的小數(shù)部分是 ;
我們還可以用以下方法求一個(gè)無(wú)理數(shù)的近似值.
閱讀理解:求的近似值.
解:設(shè)=10+x,其中0<x<1,則107=(10+x)2,即107=100+20x+x2.
因?yàn)?<x<1,所以0<x2<1,所以107≈100+20x,解之得x≈0.35,即的近似值為10.35.
理解應(yīng)用:利用上面的方法求的近似值(結(jié)果精確到0.01).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)公民的節(jié)約意識(shí),合理利用天然氣資源,某市自1月1日起對(duì)市區(qū)民用管道天然氣價(jià)格進(jìn)行調(diào)整,實(shí)行階梯式氣價(jià),調(diào)整后的收費(fèi)價(jià)格如表所示:
每月用氣量 | 單價(jià)(元/m3) |
不超出75m3的部分 | 2.5 |
超出75m3不超出125m3的部分 | a |
超出125m3的部分 | a+0.25 |
(1)若甲用戶3月份的用氣量為60m3 , 則應(yīng)繳費(fèi)元;
(2)若調(diào)價(jià)后每月支出的燃?xì)赓M(fèi)為y(元),每月的用氣量為x(m3),y與x之間的關(guān)系如圖所示,求a的值及y與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,若乙用戶2、3月份共用氣175m3(3月份用氣量低于2月份用氣量),共繳費(fèi)455元,乙用戶2、3月份的用氣量各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,∠BAD的平分線交BD于點(diǎn)E , 交CD于點(diǎn)F , 交BC的延長(zhǎng)線于點(diǎn)G , 則下列結(jié)論中正確的是( )
A.AE2=EFFG
B.AE2=EFEG
C.AE2=EGFG
D.AE2=EFAG
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com